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A B S T R A C T

To embrace the burgeoning land change science studies that exploit public-domain cloud-computing platforms
such as Google Earth Engine (GEE), for the first time, we organized a special issue entitled “Remote Sensing of
Land Change Science with Google Earth Engine” in the journal “Remote Sensing of Environment”. This paper
serves as a summary to a collection of 19 papers that have been published since the inception of the special issue
in November 2017. In particular, we summarized their contributions with regard to two perspectives: what new
themes of questions are articulated, what contributions have been made. Taking account of the disciplinary
difference, we carried out the summary separately in two major science domains: Remote Sensing of
Environment (RSE), i.e., naturally-induced land change, and Remote Sensing of Society (RSS), i.e., human-
induced land change. Furthermore, we presented a historical review of the developments of GEE-relevant studies
published before our special issue. Finally, we provided a future prospect on how GEE will continue to evolve to
further the study of land change science.

1. Introduction

A plethora of multi-temporal remote sensing data ranging from
local, regional to global coverage have been made freely available to
scientific communities via many public-domain platforms. Google Earth
Engine (GEE), a cloud computing platform, has revolutionized the
analyses of remote sensing data with its massive preloaded geospatial
datasets and parallel processing capacity (Gorelick et al., 2017; Hansen
et al., 2013). As such, it presents us an unprecedented opportunity to
advance our scientific understanding of various dynamic processes as-
sociated with the earth system, specifically those in the land change
science (Turner et al., 2007).

The first significant work of GEE was published in 2013 (Hansen
et al., 2013). Since then, a steadily increasing number of publications
have witnessed the early-stage developments of GEE-relevant applica-
tions between 2013 and 2016. In 2017, Gorelick et al. (2017) provided
the first comprehensive introduction of GEE. The paper stirred immense
interests in the remote sensing community by introducing the concept
and applications of GEE in great depth. However, no special issue on
GEE was made available prior to November 2017. In order to capture
this pivotal point in the evolution of GEE, we started to organize a
special issue entitled “Remote Sensing of Land Change Science with
Google Earth Engine” in the journal “Remote Sensing of Environment”
between November 2017 and March 2020 (Fig. 1). This issue aims to
publish research papers that focus on both the methodology and ap-
plications of GEE in two main remote sensing domains dedicated to
land change science: Remote Sensing of Environment (RSE), i.e.,
naturally-induced land change, and Remote Sensing of Society (RSS),
i.e., human-induced land change. The overarching goal of this special
issue is to uncover how GEE will transform the study of land change
science.

Now that two and a half years have lapsed, our special issue has
published 19 research articles. This paper serves as an overall summary
of the published papers in this issue. Specifically, our objectives are in
three folds:

1) To summarize the contributions achieved in all the papers published
in our special issue;

2) To understand the historical contributions made prior to our special
issue (before April 2018);

3) To envision the future prospect of GEE developments beyond the
special issue.

Since the inception of our special issue in 2017, GEE has developed
rapidly. This can be testified by the surging publication numbers in both
2018 and 2019 (Fig. 1). To this end, it should be noted that our in-
tension for this paper is not to report the up-to-date progress of GEE,
particularly the vast papers published in the last two years. Audience
who are interested in such review can be directed to a paper published
recently (Tamiminia et al., 2020).

Our organization of the paper is as follows. In Section 2, we first
separate the 19 papers into two major science domains, i.e., RSE and
RSS, then present a holistic summary of two aspects for each paper:
what science questions are addressed in each paper? what contributions
have been made utilizing GEE? In Section 3, we review the GEE pub-
lications before our special issue (between 2013 and April 2018) with
regards to the two major science domains. In Section 4, we discuss the
overall trend of how GEE has evolved to advance studies in RSE and
RSS, and provide a future prospect detailed in four aspects after our
special issue. Lastly in Section 5, conclusions are provided.
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2. GEE studies in the special issue

This section summarizes the 19 papers published in this special
issue, presented in two major science domains and seven specific do-
mains (Fig. 2). Subsequently, the domains are respectively described in
descending order of the number of publications.

2.1. Remote sensing of environment (RSE)

Three publications in this special issue focused on forests and ran-
gelands. One of the publications focused on detecting the change of
forests: Bunting et al. (2019) assessed the response of plant production
to seasonal climate variability across five deserts in the southwestern
U.S. from 1988 to 2015. The other two were related to rangeland
monitoring: Xie et al. (2019) presented a new approach to map the
change of surface vegetation properties across large-scale rangelands in
Queensland Australia, while Zhou et al. (2020) explored how the
temporal relevance of training data influences the performance of
surface conditions prediction in rangeland monitoring.

Three papers have been published about wetland in this special
issue (Cao et al., 2020; Tian et al., 2020; Wu et al., 2019). They focused
on three different topics: wetland inundation extends, land cover
change and invasive species. Wu et al. (2019) mapped wetland

inundation dynamics in the Prairie Pothole Region of North America at
watershed scales. Alternatively, Cao et al. (2020) mapped the con-
tinuous coastal dynamics in Zhoushan Archipelago, China. In addition,
Tian et al. (2020) mapped the long-term change of an invasive wetland
species (Spartina alterniflora) and presented the first regional invasion
outbreak in Beibu Gulf, South China Sea. The main data sources of Cao
et al. (2020) and Tian et al. (2020) were time-series Landsat multi-
spectral images, while Wu et al. (2019) integrated fine spatial resolu-
tion Light Detection and Ranging data and multi-temporal aerial
images.

2.2. Remote sensing of society (RSS)

There are six publications in the special issue focusing on agri-
culture-relevant applications (Bey et al., 2020; Deines et al., 2019; Jin
et al., 2019; Johnson, 2019; Parente et al., 2019; Thieme et al., 2020).
Upon comparison with previous literatures, most of the studies target
for more frequent (e.g., annual) and higher resolution cropland (or
pastureland) and crop type mapping over wider geographical regions
by leveraging unprecedented computational capabilities of GEE.

Three publications are pertinent to natural hazards, particularly to
fire and flooding (Crowley et al., 2019; DeVries et al., 2020; Liu et al.,
2020). A diverse suite of satellite imagery, including Moderate

Fig. 1. Yearly number of GEE publications between 2013 and 2019. Numbers obtained by searching “Earth Engine” as the topic in Web of Science all databases.

Fig. 2. Numbers of GEE publications in the special issue.
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Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Ima-
ging Radiometer Suite, Landsat, Sentinel-1, and Sentinel-2 have been
employed in GEE to monitor the extent and magnitude of natural ha-
zards and to quantify the uncertainties of derived estimates.

Two papers focused on urban, particularly on the impervious sur-
face distribution. Gong et al. (2020) mapped the global distribution of
impervious areas, while Shao et al. (2019) evaluated local-scale hy-
drological environment conditions with impervious area distribution
information.

One publication is dedicated to Land Use and Land Cover (LULC)
change (Ge et al., 2019). The major contribution of this work is that
they analyzed the spatial-temporal pattern of inter-annual land use
changes in China's poverty-stricken areas.

This GEE special issue includes one paper about human activity
(Wong et al., 2019). They automatically detect oil platforms in the Gulf
of Mexico using Sentinel-1 Synthetic Aperture Radar (SAR) on GEE.

3. GEE studies before the special issue

By April 2018 when this special issue was officially announced, 239
GEE-related studies had been published, covering a wide spectrum of
science domains (Fig. 3). This section provides a comprehensive review
of these publications in terms of two major science domains, i.e., RSE
(section 3.1) and RSS (Section 3.2). Subsequently, the topics are re-
spectively described in descending order of the number of publications
in each science domain.

3.1. Remote sensing of environment (RSE)

3.1.1. Forest & rangeland
Researchers studying forests took the lead in utilizing GEE. Until

April 2018, 41 publications focused on forest & rangeland problems,
with forest being the major concentration (Table 1). Most works (27
publications) studied the change of forest cover or vegetation cover
(Hansen et al., 2013; Joshi et al., 2016; Pratihast et al., 2014). Starting
from 2016, a few more recent works studied the response of forests to
climate change and hazards (Battles et al., 2017; Luo et al., 2016). In
2017 and 2018, eight GEE-based studies on estimating forest biophy-
sical parameters got published, which concerned photosynthesis, phe-
nology, aboveground biomass, carbon stock, etc. (Asner et al., 2018;
Badgley et al., 2017; Wright et al., 2017; Yu et al., 2017). As the em-
phasis on accuracy and ecological analysis increases, the geographic
extent of those forest & rangeland studies has a tendency to shrink from

global and continental (Hansen et al., 2013; Tracewski et al., 2016) to
regional and national coverage (Parente and Ferreira, 2018; Soulard
et al., 2017; Wright et al., 2017).

3.1.2. Water
There are 29 GEE publications about water, in which water mapping

and change analysis are the earliest (since 2016) and most popular
topics (Table 2). More recently, water characteristics, such as water
level, volume, water quality, temperature, flow and runoff, have been
studied. Global long-term studies are still popular, while regional and
local studies are more prevalent, with many investigations in the Ti-
betan area. Landsat imagery is the most used dataset, while other data
sources such as MODIS, Sentinel, and even unmanned aerial vehicle
data are also individually used or combined. A representative group
was the group of Noel Gorelick and Gennadii Donchyts, who published
three influential papers about water change monitoring.

3.1.3. Ecosystem & Biodiversity
There are 27 publications centered on ecosystem- or biodiversity-

related problems (Table 3). Among these studies, 14 studies are perti-
nent to ecosystem monitoring and assessment. The other 13 studies
focus on modeling the distribution dynamics of species (or

Fig. 3. Number of GEE publications before April 2018.

Table 1
Number of GEE publications concerning forest- or rangeland- related problems.

2013 2014 2015 2016 2017 2018 Total

Forest cover (change) 2 1 9 6 9 27
Response to stress 2 3 1 6
Biophysical parameter 3 5 8
Total 2 1 11 12 15 41

Table 2
Number of GEE publications concerning water-related problems.

2013 2014 2015 2016 2017 2018 2019 Total

Extent change analysis 3 6 2 11
Extent mapping 1 3 2 6
Water level and storage 1 1 3 1 6
Water quality 1 1 2
Water temperature 1 1 2
Hydrologic modeling 2 2
Total 0 0 0 8 11 9 1 29
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communities), including seven animal species and five aquatic species
(or communities). The research lying in ecosystem monitoring involves
the evaluation of ecosystem services and functions via measures of sa-
tellite-based net primary production, vegetation cover, vegetation
phenology, biodiversity, etc. The studies in species or community dy-
namics typically leverage satellite-derived variables as environmental
factors to predict its potential distributions or movement dynamics. The
geographical extent of this research topic varies from regional to global
scales, with most studies conducted in North America and Africa.
Landsat and MODIS are the primary satellite imagery used in GEE,
particularly as environmental proxies in assessing ecosystem properties
and species distributions.

3.1.4. Climate & temperature
There are 12 publications focusing on climate change or tempera-

ture-related problems (Table 4). Five of them directly quantified cli-
mate change, four of the publications worked on the effects of climate
change, and three focused on land surface temperature (LST). For the
five climate change studies, the climate variables they studied were
various, which included carbon turnover, greenhouse gas emissions,
temperature, albedo, precipitation, solar radiation, vapor pressure,
wind speed and so on. The research lying in the effects of climate
change discussed the effects of climate on land surface phenology, the
ratio of snowfall to total precipitation and tropical plumes.

3.1.5. Wetland
There were 11 publications of wetland related studies (Table 5).

They can be classified into three topics: wetland mapping or change
monitoring, wetland hydrology, and carbon fixation. Wetland mapping
or monitoring was conducted regionally in North America and South
Asia utilizing machine learning algorithms (Farda, 2017; Hird et al.,
2017). In the two wetland hydrology studies, wetness was evaluated to
trace the status of water in wetlands (Alonso et al., 2017; Tang et al.,
2016). In wetland carbon fixation studies, gross primary production or
aboveground biomass and carbon were evaluated according to their
relationship with multi-spectral or SAR images (Byrd et al., 2018; Knox
et al., 2017). Data source for most studies was Landsat imagery with 30-
m spatial resolution and full coverage of the earth starting from 1972.

3.1.6. Soil
Until April 2018, there are five published studies in soil using GEE

(Table 6). Three topics were studied including soil class mapping, soil
organic carbon mapping, and soil mercury mapping. Among these five
papers, two mapped both soil classes and organic carbon (Diek et al.,
2017; Padarian et al., 2015), two focused on mapping soil organic
carbon (Padarian et al., 2017; Sanderman et al., 2018), and one mapped

soil mercury (Obrist et al., 2016). Early soil studies using GEE are
countrywide mainly located on North and South American continents,
and later studies are extended to the global scale.

3.2. Remote sensing of society (RSS)

3.2.1. Agriculture
There are about 41 publications focusing on agriculture-related

problems (Table 7), most of which are on crop mapping (17 publica-
tions), crop yield estimation (10 publications) and crop water man-
agement (10publications). Those agricultural studies are conducted at
multiple geographical scales, ranging from regional to continental.
Specifically, the geographical regions of crop mapping are mainly in
Africa (6 publications) and Asia (4 publications), also with a few in
North America, Europe and South America (Brazil). The mapping stu-
dies in Asia have mainly focused on paddy rice, while efforts in Africa
are more general in estimating the extent and changes of croplands. The
studies of crop yield estimation are mainly conducted for maize in the
Midwestern region of the US, wheat in the northern India, and maize in
the western Kenya. Of ten studies regarding crop irrigation or water
management, four of which have been done in the US. The dataset in
GEE used in agricultural-related applications are mainly Landsat,
MODIS, Sentinel-2 and gridded weather data.

3.2.2. LULC
There are 24 publications on LULC using GEE, which cover two

categories: seven works focused on LULC mapping, i.e., mapping or
classifying the LULC at a specific time with a set of remote sensing
images, and 17 works focused on LULC change monitoring, i.e., mon-
itoring the change of LULC over a long time period or rapid updating of
LULC maps (Table 8).

LULC mapping has been studied since 2015 (Simonetti et al., 2015).
Later studies focused more on LULC change monitoring. The LULC
classes mainly include bare ground, water, urbanized areas, and sub-
categories of vegetation (e.g., deciduous forest), although the actual

Table 3
Number of GEE publications concerning ecosystem- or biodiversity- related
problems.

2013 2014 2015 2016 2017 2018 Total

Ecosystem monitoring and
assessment

1 5 3 5 14

Species/community dynamics 3 5 5 13
Total 0 0 1 8 8 10 27

Table 4
Number of GEE publications concerning climate-related problems.

2013 2014 2015 2016 2017 2018 Total

Climate change 3 2 5
Climate change effects 3 1 4
LST 2 1 3
Total 0 0 0 3 7 2 12

Table 5
Number of GEE publications concerning wetland-related problems.

2013 2014 2015 2016 2017 2018 Total

Mapping or change monitoring 1 2 4 7
Wetland hydrology 1 1 2
Carbon fixation 1 1 2
Total 0 0 1 3 6 1 11

Table 6
Number of GEE publications concerning soil-related problems.

2013 2014 2015 2016 2017 2018 Total

Soil class/property and organic
carbon mapping

1 1 2

Soil organic carbon mapping only 1 1 2
Soil mercury mapping 1 1
Total 0 0 1 1 2 1 5

Table 7
Number of GEE publications regarding agriculture-related problems.

2013 2014 2015 2016 2017 2018 Total

Crop mapping 4 10 3 17
Crop yield estimation 1 2 6 1 10
Crop water management 5 4 1 10
Other 2 2 4
Total 0 0 1 13 22 5 41
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classes included differ in each paper. Study sites ranged from small
areas (e.g., within one Landsat scene) to global scales, while the time
span ranged from as short as one time point all the way to 30 years. The
largest project monitored LULC change at the global scale for 12 con-
secutive years. (Ying et al., 2017). Most studies used Landsat time-series
data thanks to their relatively high spatial, temporal, and spectral re-
solutions, while other datasets were sometimes employed to provide
additional information (e.g., MODIS providing land/atmospheric/ocean
products (Eberle et al., 2016), Phased Array type L-band Synthetic
Aperture Radar data penetrating cloud cover and characterizing vege-
tation structure (Johnson and Iizuka, 2016)). Besides various automatic
mapping approaches being proposed or tested (e.g., (Azzari and Lobell,
2017; Simonetti et al., 2015)), visual interpretation is also greatly fa-
cilitated by GEE (e.g., (Miettinen et al., 2016)).

3.2.3. Hazard
About 14 publications in GEE focus on the natural hazard-related

applications (Table 9). A multitude of types of hazards have been in-
vestigated in those studies, including fire, flooding, disaster, wind-
storm, and drought. Satellite imagery has been mostly utilized to
monitor geographical areas affected by natural hazards and assess their
influences on surrounding environment (e.g., land cover changes). For
instance, the fire-related studies mainly employ satellite imagery to
analyze the burnt and deforested areas caused by fire, burnt severity
and its influence on vegetation (Petrakis et al., 2018; Reddington et al.,
2015; Soulard et al., 2016; Verhegghen et al., 2016). The geographical
extent of those natural hazard applications varies from regional to na-
tional scales, with representative studies conducted in the US, Brazil,
and Congo. A range of satellite imagery, including Landsat, MODIS
(e.g., aerosol optical depth and active fire products), Sentinel-1, Sen-
tinel-2, have been explored to characterize the properties of natural
hazards to facilitate the subsequent monitoring.

3.2.4. Urban
Characterization of urban land was one of the most popular domains

in GEE applications (Table 10). Twelve articles related to urban land
using GEE have been published since 2015 until April 2018. Seven of
the 12 papers focused on urban extent mapping (Goldblatt et al., 2018;
Goldblatt et al., 2016; Liu et al., 2018; Patel et al., 2015; Savory et al.,
2017; Trianni et al., 2015; Zhang et al., 2015), which is the most
popular urban topic. Following urban extent, urban ecosystems (Li
et al., 2017; Meerow et al., 2017), socio-economic trends (Proville
et al., 2017), population distribution (Li and Lu, 2016), and accessi-
bility to city (Weiss et al., 2018) have also been investigated and
mapped in GEE.

3.2.5. Health
There are about eight studies centered on health-related applica-

tions (Table 11), which can roughly be categorized into three topics
(i.e., disease risk mapping, influential factors for disease distribution,
and urban health assessment). Disease risk mapping was conducted
mainly for malaria and tick bite (Garcia-Martí et al., 2017; Larsen et al.,
2017; Smith et al., 2017; Sturrock et al., 2014; Tatem et al., 2014). A
variety of factors influencing the generation and distribution of diseases
were investigated in GEE, including forest fire (Reddington et al.,
2015), environmental and human factors (Garcia-Martí et al., 2017),
location (Larsen et al., 2017), age and gender (Smith et al., 2017), and
urban heat island (Méndez-Lázaro et al., 2018). Urban health was as-
sessed according to the availability and accessibility of green space in
urban areas (Huang et al., 2017). The geographical extent of those
health-related applications varies from regional to national scales, with
representative studies conducted in Africa, North America, and Europe.
Several datasets in GEE, including Landsat, MODIS, topography, land
cover, and weather data, have been explored as environmental cov-
ariates in assessing the disease risk and transmission dynamics.

3.2.6. Human activity
Three papers focused on human activities and their environmental

impacts using GEE until April 2018 (Table 12). It was a field waiting to
be further explored. Two topics were explored: one paper attempted to
detect human activities on the ocean and the other two papers esti-
mated temperature-related environmental impacts caused by human
activities. SAR data in GEE were utilized to extract mining activity at a
local scale (Chaussard and Kerosky, 2016), and MODIS LST data were
used to link the intensity of human activities to the temperature change
(Benz et al., 2017; Elhacham and Alpert, 2016). Although these three
studies were at local or country scales, the use of GEE would make the
proposed methods applicable in further global studies.

Table 8
Number of GEE publications concerning LULC-related problems.

2013 2014 2015 2016 2017 2018 Total

Change monitoring 10 4 3 17
Mapping 1 2 4 7
Total 0 0 1 12 8 3 24

Table 9
Number of GEE publications concerning natural hazard-related problems.

2013 2014 2015 2016 2017 2018 Total

Fire 1 2 1 4
Flooding 1 1 2 4
Disaster 1 1 1 3
Windstorm 1 1 2
Drought 1 1
Total 0 0 2 4 3 5 14

Table 10
Number of GEE publications concerning urban-related problems.

2013 2014 2015 2016 2017 2018 Total

Urban extent mapping 3 1 1 2 7
Urban ecosystem 2 2
Socio-economic trends 1 1
Population mapping 1 1
Accessibility mapping 1 1
Total 0 0 3 2 4 3 12

Table 11
Number of GEE publications concerning health-related problems.

2013 2014 2015 2016 2017 Total

Factors for disease distribution 1 1 3 5
Disease risk mapping 2 2
Urban health assessment 1 1
Total 0 2 1 1 4 8

Table 12
Number of GEE publications concerning human-activity-related problems.

2013 2014 2015 2016 2017 2018 Total

Human's impact on environment 1 1 2
Change of human activity 1 1
Total 0 0 0 2 1 0 3
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4. Discussion

The GEE-related literatures before April 2018 show that RSE studies
arise earlier and quickly gain more attention than RSS studies. In
contrast, it should be remarked that our special issue published a larger
portion of RSS papers than those of RSE, indicating the RSS studies
begin to take off in the recent years. Therefore, it is intriguing to reveal
the respective path that RSE and RSS has gone through and hopefully
shed light on their future developments. To this end, this section pro-
vides a holistic synthesis of the review presented in Sections 2 and 3.
More specifically, in Sections 4.1 and 4.2, we traverse the evolution
within RSE and RSS domains, respectively; in Section 4.3, we attribute
the various developments to four major aspects and strive for identi-
fying potential research directions.

4.1. Remote sensing of environment (RSE)

RSE aims to uncover the environmental changes resulted from
natural factors. Since the GEE work commenced in RSE, three dis-
tinctive patterns of analyses are gradually unfolded in RSE: burst of
mapping and change quantification, transition from mapping to mod-
eling, and refinements of algorithm and accuracy.

Driven by the fact that GEE provides free access to a wide spectrum
of multi-temporal and global coverage datasets, the first group of re-
search focused on mapping and quantifying different land cover
changes. For example, global forest was mapped with GEE-based on
widely applied vegetation indices (e.g., Normalized Difference
Vegetation Index ) (Hansen et al., 2013). Along the same line, water
mapping with GEE was developed owing to the fact that water body is
relatively easy to be differentiated from other land cover types (Pekel
et al., 2016). Subsequently, mapping and change analysis were spread
to other land cover types, such as wetland (e.g., (Alonso et al., 2016))
and soil (e.g., (Padarian et al., 2015)).

The second pattern we perceived is the transition of analysis from
mapping to modeling. Inheriting the success of various land cover
mapping and change quantification, substantial modeling efforts have
been invested in order to probe the driving factors to the quantified
changes. For example, investigation on the coupling of vegetation
changes and various environmental factors (e.g., oil and gas locations,
animal species distribution) led to the development of ecosystem and
biodiversity research using GEE (Allred et al., 2015; Lewis et al., 2017).
On the other hand, the modeling of climate and temperature lagged
behind their ecosystem counterpart (Attermeyer et al., 2016; Fick and
Hijmans, 2017), likely due to its relative complication compared to
mapping studies.

Adjoining the early efforts on mapping and modeling, a third thread
of analysis emerged with a focus on refining the algorithm and accu-
racy. Examples of such endeavors include (1) expanding data source
from coarse spatial resolution (e.g., MODIS) to medium and high re-
solutions (e.g., Landsat and Sentinel), from solely optical imagery to
fusion with radar and other ancillary data; (2) restricting the geo-
graphic extent from global to regional so that the algorithms can be
better customized. These attempts, in turn, would further benefit the
mapping and modeling studies.

4.2. Remote sensing of society (RSS)

Unlike RSE, RSS aims to understand land changes primarily induced
by human activities. Given the complication of the reconnaissance of
human-related variables, RSS emerged later than RSE. Among the
limited RSS works, three different clusters have been revealed: detec-
tion of human-induced environmental change, examination of en-
vironmental impact on society, and direct observation of human ac-
tivity.

The predominant RSS publications fall in the detection of human-
induced environmental change, mostly residing in three RSS domains:

agriculture, LULC, and urban. This is partially attributed to the progress
made with its counterpart in RSE. Leveraging the massive data re-
pository of GEE, new mapping methods were developed to incorporate
vegetation phenology in distinguishing the human-induced land cover
change. For example, based on time-series Landsat images, pixel-based
indices were proposed to map paddy rice areas (Dong et al., 2016),
LULC in protected areas (Simonetti et al., 2015), and global urban ex-
tent (Liu et al., 2018). Furthermore, new modeling methods took place
drawing upon the fusion of multiple sources of data on GEE, e.g., for
crop yield estimation (Lobell et al., 2015) and for urban population
estimation (Li and Lu, 2016).

The second thrived cluster of work in RSS focuses on the ex-
amination of the environmental impact on society. Two primary RSS
domains, hazard and health, have reported some preliminary efforts
using GEE. Interestingly, instead of applying conventional methods
universally on a global scale, studies in this category have leaned to-
ward developing new mapping methods that can be adapted to a local
or regional scale. For example, scholars leveraged multi-source data to
map deforestation due to wildfire (Reddington et al., 2015) and to
model health-related environmental factors (Tatem et al., 2014). Pro-
gressively, more exclusive GEE-based methods were developed to yield
a higher accuracy for quantifying the various environmental impacts
(Coltin et al., 2016; Verhegghen et al., 2016).

More recently, the research on direct observation of human activity
have started to emerge yet understudied. Amid the limited works, they
attempted to expose human activity from infrastructure changes and
nighttime light use. The underdevelopment is due to the fact that the
GEE datasets (e.g., 30-m Landsat images (Elhacham and Alpert, 2016),
10-m Sentinel-1 SAR data (Wong et al., 2019), 1-km NTL data (Benz
et al., 2017)) have rather coarser resolution than what is imperative for
diagnosing human activity. Since human activity can be highly het-
erogeneous over space and time, these works could potentially benefit
from higher resolution data such as DigitalGlobe images (sub-meter)
(Chaussard and Kerosky, 2016) and Jilin1-03 NTL data (0.92 m) (Du
et al., 2018). Therefore, we envision the future developments of human
activity using GEE is contingent upon both the availability of high-
spatial-resolution observations and the development of effective
methods such as object-based image analysis and artificial intelligence
algorithms on GEE.

4.3. Future prospect

Despite the strides that both RSE and RSS have been progressing in
their own courses of directions, it would be intriguing to examine the
existing works under universal trends of analyses, based on which po-
tential research directions can be inferred. Our special issue on GEE
occurred at a turning point when various applications started to
flourish. Along with the publicity of GEE, a large user community has
been nurtured to foster GEE in their respective fields of studies. As a
result, the pressing user demands have driven the types of analyses
from basic data acquisition, to intermediate data processing, and ulti-
mately to sophisticated modeling. Therefore, we propose the following
to examine all the works under the umbrella of four universal trends of
analyses (Table 13): from temporally static to dynamic, from mapping
to modeling, from single data source to multiple data sources, and from
using GEE for data retrieval to using GEE to articulate new science
questions.

Table 13 details how the four proposed universal trends of analyses
progressed in each science domain as included in RSE and RSS. In the
table, two different symbols are adopted to represent two distinctive
development status, i.e., checked items indicate that the developments
have occurred, while the unchecked ones signal that no developments
exist. We have discerned two seeming trends as follows.

First, in general, more checked items have shown up in RSE than in
RSS, which resembles our earlier statements that RSE was more es-
tablished than RSS. More specifically, studies on forest & rangeland in
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RSE and LULC in RSS have prevailed in existing GEE research as evi-
denced by all the four trends checked. Conversely, studies on soil and
human activities trailed behind their main-stream cohorts as evidenced
by only two out of the four trends checked. We infer that a possible
impetus for the disparate developments is data adequacy, i.e., if the
data demanded by a science domain can be largely satisfied by GEE
exclusively, then the development is naturally populated; alternatively,
if additional domain-specific data is requested beyond what is provided
by GEE, then the development is encumbered.

Second, the four universal trends unveiled at different paces of
adaptation in different science domains. 1) In 10 out of the 12 science
domains in RSE and RSS, analyses have been migrated from spotting
single-time static status to monitoring multi-temporal dynamics, thanks
to the time-series datasets housed by GEE. The two domains lingering
with static analysis are soil and human activity. This can likely be at-
tributed to data availability. More specifically, soil studies often engage
underground measurements while human activity is desired to be
portrayed with meter-level data. However, the datasets catered by GEE
are mostly satellite observations of the earth surface, which remain too
coarse in spatial resolution for the two domains' experts to resolve their
questions. Therefore, we anticipate that studies on soil and human ac-
tivity using GEE can be expanded to dynamic analyses if refined data-
sets can be assimilated in GEE. 2) Nearly all domains have practiced a
transition from mapping to modeling. The only exceptions are climate &
temperature and health, in which modeling is indispensable in the
beginning. It should be noted that although GEE provides a ready
computing facility to facilitate modeling efforts, most existing work is
still in its infancy as only simple regression is adopted. More sophisti-
cated mathematical forms are desired to be included in future model
developments to fully embrace the GEE potential. 3) All domains have
transitioned from using single data source to using multiple data
sources because of vast efforts toward full exploitation of GEE.
Nevertheless, as more and more datasets are assessed on GEE, a po-
tential route of refinement can be the combined use of datasets that
encompass different spatial, temporal, and spectral resolutions. 4)
Lastly, nearly in all the science domains, GEE was primarily adopted for
expanding spatial and temporal coverage of a prevailing research
question pre-existing in the domain. The two domains that have pio-
neered in this transition trend are forest & rangeland and LULC. In the
forest & rangeland domain, an exemplified question is to examine how
the vegetation worldwide is affected by various natural and anthro-
pogenic factors such as climate change (Bunting et al., 2019) and
human population (Bunting et al., 2019; Tracewski et al., 2016). In
LULC, researchers have started to scrutinize the unparalleled large-
spatial-scale and long-temporal patterns of LULC change as a testimony
to the effectiveness of a policy (Ge et al., 2019). As a significant number
of GEE research starts to unfold, we envision that new suites of science

questions will be cultivated that can seamlessly integrate the data and
computing potential indigenous in GEE in advancing the respective RSE
and RSS domains.

5. Conclusions

This paper provides a summary to our special issue on land change
science with GEE, which has published in total 19 research articles.
Rooted in the two broadly-defined science domains, i.e., RSE and RSS,
we summarized the various contributions achieved by these articles. In
addition, embracing the special issue as an anchor point, we analyzed
the historical developments before the special issue, and provided a
prospect of the future developments after the special issue. Finally, we
envision that GEE will equip the broad science community with better
cutting-edge tools and free access to wider spectrum of remote sensing
data, and thus utterly stimulate the emergence of transformative re-
search questions in land change science.
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