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Abstract
Purpose – The purpose of this paper is to improve the retrieval results of hyperspectral image by integrating both spectral and textural features.
For this purpose, an improved multiscale opponent representation for hyperspectral texture is proposed to represent the spatial information of the
hyperspectral scene.
Design/methodology/approach – In the presented approach, end-member signatures are extracted as spectral features by means of the widely
used end-member induction algorithm N-FINDR, and the improved multiscale opponent representation is extracted from the first three principal
components of the hyperspectral data based on Gabor filters. Then, the combination similarity between query image and other images in the
database is calculated, and the first k more similar images are returned in descending order of the combination similarity.
Findings – Some experiments are calculated using the airborne hyperspectral data of Washington DC Mall. According to the experimental results,
the proposed method improves the retrieval results, especially for image categories that have regular textural structures.
Originality/value – The paper presents an effective retrieval method for hyperspectral images.

Keywords Image processing, Spectral analysis

Paper type Research paper

1. Introduction
With the increasing availability of the huge volume of Earth
Observation data, remote sensing image retrieval technology
has drawn more and more public attention in recent years.
Traditionally, metadata, such as sensor type, data acquisition
time and geographical position, are commonly used for
information retrieval from remote sensing databases (Ferecatu
and Boujemaa, 2007). Unfortunately, metadata cannot
describe the abundant visual information contained in remote
sensing images well. In most applications, people are more
concerned with the content of remote sensing images rather
than corresponding metadata. In addition, metadata-based
retrieval usually requires professional knowledge, which has
impeded the development and application of remote sensing

image retrieval. In this respect, content-based remote sensing
image retrieval (CBRSIR) method is a more desired choice.
Ozkan et al. (2014) compared three CBRSIR representation
methods and gave a performance analysis with some
experiments on the publicly available UC Merced dataset.

For CBRSIR method, images are characterized by low-level
visual features, which can be extracted using feature extraction
algorithms, and images are associated with corresponding
feature vectors. Given one query image, relevant images will
then be retrieved and returned in the order of ascending or
descending similarity calculated through predefined similarity
measures. In image retrieval community, CBRSIR methods
are mostly exploited on high-resolution images (Yang and
Newsam, 2013; Wang et al., 2014) and synthetic aperture
radar (SAR) images (Espinoza-Molina and Datcu, 2013).
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Despite the important progress of CBRSIR, few works have
been done on hyperspectral images. In recent years, the
Computational Intelligence Group of the University of Basque
Country has conducted some works on hyperspectral image
retrieval (Grana and Veganzones, 2012; Veganzones and
Grana, 2012). Grana and Veganzones (2012) extracted
end-members as spectral features by end-member induction
algorithms and defined an end–member-based image distance
to measure the similarity between two hyperspectral images.
Both real and synthetic hyperspectral data were used to
validate the proposed hyperspectral image retrieval algorithm.
It is shown that the proposed algorithm, based on spectral
features, is effective in retrieving hyperspectral images.
However, the method takes no consideration of the spatial
distribution of end-members. To avoid such deficiency and
improve retrieval results, Veganzones and Grana (2012)
proposed a spectral – spatial retrieval system, which estimated
and introduced the fractional abundances of end-members in
similarity measure. Plaza et al. (2007) proposed a parallel
system for efficient hyperspectral image retrieval.

Though some differences exist among above works, they
share similar ideas that end-member signatures extracted from
hyperspectral images based on linear mixing model are taken
as spectral features in the retrieval system, and the similarity
between two images is measured through calculating the
distance between corresponding spectral features in a feature
space. Nevertheless, due to the phenomena that the same
object can have very different spectra, and totally different
objects may share similar spectra, some hyperspectral images
are still difficult to retrieve, even with high spectral resolution.
In hyperspectral image processing techniques, spectral and
spatial information are complementary. In some cases, it is
even mandatory to integrate them together for some certain
applications (Plaza et al., 2009).

To improve the performance of hyperspectral image
retrieval, we propose a hyperspectral image retrieval method
that integrates spectral and textural features. Specifically,
spectral features are extracted by end-member induction
algorithm, and textural features are computed from the
principal component analysis (PCA) – transformed image
with Gabor filters.

2. Feature extraction and similarity measure
In this section, the framework of the proposed retrieval
method is illustrated first, and details of feature extraction as
well as similarity measures used are then introduced.

2.1 Framework of the proposed method
Figure 1 illustrates the framework of the proposed
hyperspectral image retrieval method that mainly includes two
parts, feature extraction and similarity measure. Both of these
are indispensable functional modules of one CBRSIR system.
For feature extraction, spectral and textural features are
extracted by means of N-FINDR and Gabor filters,
respectively, and two feature databases, including a spectral
feature database and a textural feature database, are built.
Consequently, each image can be represented by the
corresponding features stored in the feature databases through
indexing mechanism. For similarity measure, the process can
be described briefly as follows:

● Calculate the spectrum similarity and the texture similarity
between the query image and images in the database
through predefined similarity measures.

● Combine the spectrum similarity and the texture
similarity, and obtain the combination similarity between
these two images.

● Rank the images with descending combination similarity,
and return the first k retrieved images.

2.2 Feature extraction procedure
2.2.1 Spectral features
The linear mixing model is widely used for hyperspectral data
analysis (Keshava and Mustard, 2002). The core of this model
is based on the premise that within a specific hyperspectral
scene, the reflectance of each pixel can be described as the
linear combination of endmember spectra, and it can be
extended to the whole image and denoted by:

I � E� � W (1)

where I is the hyperspectral image with q spectral bands,
E � �e1, e2, . . ., en� is a q � n matrix standing for the
end-member signatures of image I and ei�i � 1, 2, . . ., n� is
one of the extracted end-member signatures of image I.
� � ��1, �2, . . ., �n� is the fractional abundance matrix and
�i�i � 1, 2, . . ., n� is the fractional abundance vector of
end-member ei. Note that � is subject to two constraints: each
element of � is greater than 0, and the sum of row elements of
� equals 1. W is the additive noise.

Figure 2(a and b) includes two hyperspectral image patches
with the same size, and both have two land cover classes A and
B. Assuming the two image patches happen to have the same
end-member signatures, then they will be considered very
similar through the pre-defined similarity measure. However,
in fact, they have low similarity because of the totally different
proportions of A and B in each image patch. To overcome
such deficiency, the hyperspectral image I can be
characterized by the tuple (E, �), which takes the spatial

Figure 1 The framework of the proposed hyperspectral image
retrieval method
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distribution of end-members into consideration, thus
improving the retrieval results (Veganzones and Grana, 2012).

Then, the focus of spectral features extraction turns to the
extraction of end-member signatures. Many methods have
been developed for end-member determination in practice.
Veganzones and Grana (2008) gave a comprehensive
enumeration of commonly used end-member determination
methods, such as N-FINDR (Winter, 1999), Pixel Purity
Index) (Boardman et al. 1995), Convex Cone Analysis
(Ifarraguerri and Chang, 1999) and Automated
Morphological Endmember Extraction (Plaza et al., 2002). In
the work by Plaza et al.(2004), the end-member extraction
methods mentioned above and some other methods are
rigorously compared by a custom-designed quantitative and
comparative framework. However, it is unlikely to find an
algorithm that is appropriate for all the situations in
end-member extraction. In this article, N-FINDR is used for
end-member extraction.

Despite N-FINDR being widely used in various domains, it
cannot determine the number of needed end-members (Plaza
and Chang, 2005). Here, we provide two strategies to
determine the number of induced end-members. The first
strategy is to manually assign the number of induced
end-members, and the second strategy is to estimate the
number of end-members using virtual dimensionality (VD)
algorithm (Chang and Du, 2004). We use the package
provided by Veganzones and Grana (2012) to implement
N-FINDR algorithm based on the two strategies.

In view of the situation that the number of identified and
used end-members in practice is ranging from three to seven
(Keshava and Mustard, 2002) and the hyperspectral image
data used in our experiments contains seven ground cover
types, we assign the number of end-members ranging from 3
to 7 for the first strategy.

2.2.2 Textural features
There are various texture representations with respect to
texture feature analysis, such as Gabor filter (Manjunath and
Ma, 1996), Wavelet Transform (Chang and Kuo, 1993),
Local Binary Pattern (LBP) (Ojala et al., 2002) and global
morphological texture (Aptoula, 2014). While these texture
features tend to achieve ideal performance in image retrieval
literature, they are generally designed for processing images
with a single band, which are not suitable for multispectral or
hyperspectral images directly. Though applying texture
extraction methods to each band of the hyperspectral image
may be one solution, it suffers from high computational
complexity and inefficiency. In addition, each band of the
hyperspectral data exhibits nearly the same scene structure,

and the information will be redundant if all bands are taken
into consideration.

Shi and Healey (2003) proposed a multiscale opponent
representation for hyperspectral texture recognition, which is
based on Gabor filters and combines spatial information
across spectral bands. Motivated by this research, we
proposed an improved color texture descriptor for aerial image
retrieval in our previous work (Shao et al., 2014). In this
paper, the improved color texture descriptor was adapted for
hyperspectral texture extraction.

Due to the high dimensionality of hyperspectral data, we
present a PCA-based textural feature extraction strategy with
lower computational complexity and higher efficiency for
hyperspectral data. The following steps illustrate the brief
procedures of the proposed strategy.
● Apply PCA to reduce the dimensionality of the whole

hyperspectral scene to acquire the first three principal
components.

● Partition the principal components into image patches of
32 � 32 pixels size and prepare the retrieval dataset
(details can be found in Section 3).

● Extract Gabor opponent (GaborOpp, which is named
CGOT in our previous work mentioned above) texture of
each image patch and represent each image patch using a
GaborOpp feature vector.

Considering that GaborOpp textural feature is fused by Gabor
texture and opponent feature, we first introduce the extraction
of the two features based on Gabor filters. The Gabor filters
used in this paper are as follows (Liu and Wechsler, 2002):

�uv(z) �
�ku��

2

	2
e(
�kuv�

2
�z�

2 /2	
2)[eikuvz 
 e
	

2/2] (2)

where z � �x, y�, u � �0, 1, 2, 3, 4, 5, 6, 7� and v �

�0, 1, 2, 3, 4� are the orientation and the scale parameters of
Gabor kernels. �kuv� is the norm operation, and kuv is defined
as follows:

kuv � kvei�u (3)

where kv � kmax /f v and �u � �u/8. kmax � �/2 is the maximum
frequency, f � �2 is the space factor and 	 � 2� denotes the
standard deviation.

Let P be an image patch, and Pi�i � 1, 2, 3� be ith principal
component of the patch. The convolution of Pi and Gabor
kernels �uv with orientation u and scale v is given by:

giuv(z) � Pi(z) � �uv(z) (4)

Gabor texture of each principal component is composed of the
mean �uv and the standard deviation 	uv of the transform
coefficients, which are defined by:

��iuv � A giuv(x, y)dxdy

	iuv � �A (giuv(x, y) 
 �iuv)2dxdy

(5)

Figure 2 Two hyperspectral image patches with the same land
cover classes but totally different proportions
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The Gabor texture of P is characterized by T � 	�iuv, 	iuv
,
which is one 80 � 3 matrix and ith column represents the
textural feature vector of ith principal component.

Let giuv�x, y� and gjuv��x, y� be the convolution results of
different principal components Pi and Pj�i, j � 1, 2, 3; i � j�,
respectively, of image patch P using equation (4), and the
normalized difference between giuv�x, y� and gjuv��x, y� can be
defined by:

dijuvv�(x, y) �
giuv(x, y)

�� giuv
2 (x, y)



gjuv�(x, y)

�� gjuv�

2 (x, y)

(6)

where u and v, v� denote the orientation and scales of Gabor
filters used, respectively. Note that v and v� are adjacent scales,
which means they meet the condition v 
 v� � 1.

Thus, 13 scale groups and 8 orientations are available. In
terms of scale groups, they are: (v,v=) � {(0,0), (1,1), (2,2),
(3,3), (4,4), (0,1), (1,0), (1,2), (2,1), (2,3), (3,2), (3,4),
(4,3)}. The opponent feature of P can be characterized by

opp � 	��dijuvv�
2 �x, y�
, which is a total of 312 feature vectors.

Then GaborOpp texture is defined by:

GaborOpp � ��iuv, 	iuv, �� dijuvv�
2 � (7)

As one of the comparative features, the multiscale opponent
representation (UniOpp) used for hyperspectral texture
recognition by (Shi and Healey, 2003) can be characterized as:

UniOpp � ��� giuv
2 (x, y), �� dijuvv�

2 (x, y)� (8)

2.2.3 Similarity measures
Effective image similarity measures are requisite for accurate
image retrieval. For spectral features, the spectral–spatial
dissimilarity measure is used to calculate the dissimilarity
between two image patches (Veganzones and Grana, 2012).

Let E1 � �e1
1, e2

1, . . ., em
1 � and E2 � �e1

2, e2
2, . . ., en

2� be the
end-member signatures of image H1 and H2, respectively,
where m and n are the number of end-members. Define
D12 � �dij; i � 1, 2, . . ., m; j � 1, 2, . . ., n� as the
end-member distance matrix, and dij as the distance between
the end-member pair from E1 and E2. In this article, dij is
calculated by means of spectral angle mapper, one common
distance metric in hyperspectral image processing as follows:

dij � arccos �ei
1, ej

2�

�ei
1��ej

2�
� (9)

where ei
1 and ej

2 are the end-member vectors of E1 and E2,
respectively. The spectrum dissimilarity between H1 and H2 is
given by:

DS(H1, H2) � �
i,j

rijdij (10)

where dij is the spectral distance between two end-members
from E1 and E2, and rij is the significance matrix associated
with dij. The readers can refer to the work by Veganzones and

Grana (2012) for more details about the computation of the
significance matrix rij.

For GaborOpp textural feature, the texture dissimilarity
between H1 and H2 is given by:

DT(H1, H2) � �
i�1

p � f 1
i 
 f 2

i

	i
�� (11)

where f1i�i � 1, 2, . . ., p� and f2
i�i � 1, 2, . . ., p� are

corresponding elements of GaborOpp texture vector of image
H1 and H2, respectively, and 	 i�i � 1, 2, . . ., p� is the standard
deviation of GaborOpp texture over the entire image database.

The combination dissimilarity DC�H1, H2� between H1 and
H2 is defined by:

DC(H1, H2) � �DS(H1, H2) � �DT(H1, H2) (12)

where DS�H1, H2� and DT�H1, H2� are spectrum dissimilarity
and texture dissimilarity, respectively. � and � are the weight
of spectrum dissimilarity and texture dissimilarity in the
combination similarity, respectively, and can be determined
by:

�� � � � 1
� 
 � � DS(H1, H2) 
 DT(H1, H2)

(13)

3. Experiments and analysis
The airborne hyperspectral data of Washington DC Mall is
used to evaluate the performance of the proposed method.
The original hyperspectral cube has 210 bands in 0.4- to
2.4-�m region, but only 191 bands are commonly used. The
bands in 0.9- and 1.4-�m regions are omitted because the
atmosphere is opaque. Consequently, the data cube used in
our experiments has 1,208 lines, 307 samples and 191 bands.

The scene of Washington DC Mall is partitioned into 314
image patches of 32 � 32 pixels size. Image patches with
similar scenes are manually grouped into one category.
Figure 3 gives five example patches of per category. The name
and number of each category are (Figure 3(a)) Grass-24,
(Figure 3(b)) Road-60, (Figure 3(c)) Mixture-20 (including
three land cover types, grass, tree and trail), (Figure 3(d))
Others-44 (including more land cover types, such as grass,
building, road and tree), (Figure 3(e)) Tree-42, (Figure 3(f))
Water-24 and (Figure 3(g)) Building-100. Thus, the retrieval
database is challenging for image retrieval because it contains
various land cover types. Note that if an image patch is mainly
dominated by a specific image class, then it will be grouped
into this category, such as Grass, Road, Tree, Water and
Building. However, if it is difficult to determine the dominated
image class of an image patch, then it will be grouped into
either Mixture or Others.

3.1 Experiment I
This section describes the performance of spectral features
using the two abovementioned strategies to determine the
number of induced end-members. Table I shows the retrieval
precision of each category using spectral features based on the
two strategies. It is interesting that the best performance of
each category results from various number of end-members. It
indicates that the number of end-members or, in other words,
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the strategy used to determine the number of needed
end-members is an important factor that affects the spectral
retrieval result. To reduce this impact and improve the
performance, an improved strategy (IS) is proposed and
briefly described as follows. For the categories Grass and
Tree, VD is used to estimate the number of induced
end-members. For the categories Mixture, Water, Others,
Building and Road, the number of induced end-members is
assigned 3, 4, 5, 6 and 7, respectively. Estimating the number
of needed end-members is still an open question in spectral
unmixing literature, but it is not the focus of our work in this
paper. Therefore, we call IS “strategy” rather than “method”
here, which means IS is introduced to decrease the influence
of the number of end-members on the retrieval performance
to some extent, and it is not appropriate for other applications
as VD algorithm does.

The average precision of each category using above
strategies to determine the number of needed end-members is
shown in Figure 4. It is apparent that IS improves the retrieval
performance of the categories Mixture, Others and Water, and
it achieves higher precision than most of the other methods for
the categories Grass, Road, Tree and Building. The last bin
shows the precision averaged over all image categories. We can
see that the best performance results from the IS. This makes
sense because the spectral features with appropriate number of

end-members provide a better representation of the
hyperspectral scene.

In subsequent experiments, IS is applied to determine the
number of induced end-members.

3.2 Experiment II
Despite the good performance of spectral features for some
image classes, the overall performance measured by average
precision is not satisfying. In addition, those image categories
that have regular textural structures, such as Grass, Road and
Mixture, have not achieved better performance as expected.
From this respect, the image retrieval system should benefit
from the incorporation of textural information.

Table II summarizes the performance of GaborOpp texture
against three comparative features. For Gabor texture and
UniOpp texture, Section 2.2.2 shows the detailed process of
feature extraction. For LBP feature, we compute LBP 8, 1

riu2 ,
which means LBP has been implemented using 8 pixels
circular neighbor of radius 1 in our experiments. According to
the results in Table II, GaborOpp has better performance on
the hyperspectral dataset than the other three texture features,
indicating the powerful representation performance of
GaborOpp texture.

Table III demonstrates the advantage of hyperspectral
image retrieval using integrated spectral and GaborOpp
features. For the categories Grass, Road and Mixture,
integrated features improve the performance dramatically
compared with spectral features. For the categories Others,
Tree, Water and Building, which have no obviously regular

Figure 3 Five image patches per category of the retrieval database

Table I Retrieval precision of each category using spectral features with
two strategies to determine the number of induced end-members

Category VD 3 4 5 6 7

Grass 0.5533 0.3187 0.5278 0.4952 0.4925 0.5071
Road 0.3827 0.2724 0.3223 0.3393 0.3608 0.4137
Mixture 0.3444 0.3860 0.3201 0.3819 0.2849 0.3191
Others 0.2511 0.2393 0.2877 0.2997 0.2862 0.2558
Tree 0.4426 0.3115 0.4214 0.3732 0.3612 0.3702
Water 0.7115 0.7462 0.8149 0.7716 0.7387 0.7208
Building 0.6194 0.5202 0.5514 0.5938 0.6871 0.6368

Figure 4 Average precision of each category with various numbers
of endmembers

Table II The performance of the improved texture feature against other
texture features

Category GaborOpp Gabor UniOpp LBP

Grass 0.7396 0.8026 0.6789 0.3617
Road 0.4217 0.3922 0.4056 0.3286
Mixture 0.8418 0.6079 0.8284 0.4069
Others 0.3134 0.2958 0.3071 0.2855
Tree 0.5671 0.5187 0.5657 0.3534
Water 0.6962 0.7607 0.6201 0.6141
Building 0.5959 0.6147 0.5864 0.5095
Average 0.5965 0.5704 0.5703 0.4085
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textural structures, integrated features have similar
performance as spectral features indicating that textural
features are valuable information for hyperspectral image
retrieval, particularly for those categories having regular
textural structures.

The precision-recall curve is used to further evaluate the
performance of integrated features. Postulating a query that
searches for the first k more similar images to the query
image, then precision is defined as the fraction of relevant
images in k retrieved images and recall is defined as the
fraction of relevant images that are retrieved in the entire

image database. The precision-recall curve for spectral
features, textural features and integrated features is shown
in Figure 5. The plots demonstrate that the integrated
features outperform spectral features and textural features.
In terms of textural features, the improved color texture
descriptor GaborOpp has better performance compared to
the other three textural features. However, when recall is
greater than 0.45, the curve of integrated features decreases
quickly. Two reasons can be used to explain this
phenomenon. On one hand, retrieving the first k more
relevant images becomes more difficult when the query
scope k increases, and the complexity of the image scenes
compromises the performance. On the other hand, the
number of images of each category is uneven. So as the
query scope k increases, the proportion of relevant images
in the returned images is down rapidly for the categories of
small size, and is down slowly for the categories of big
size.

The results shown in Figure 5 not only demonstrate the
advantages of the integrated features for hyperspectral image
retrieval but also provide the insight that the number of images
of each category should be as even as possible. In addition, the
idea that textural features incorporating discriminative
information among color bands have better representation
performance may be informative for other applications such as
texture recognition and classification.

Table III Retrieval result of each category using spectral features,
GaborOpp textural features and integrated features

Category
Spectral
features GaborOpp

Integrated
features

Grass 0.4529 0.7396 0.7443
Road 0.3933 0.4217 0.5046
Mixture 0.4299 0.8418 0.8591
Others 0.2931 0.3134 0.3450
Tree 0.5330 0.5671 0.5784
Water 0.8762 0.6962 0.8246
Building 0.7301 0.5959 0.7450
Average 0.5298 0.5965 0.6573

Figure 5 The precision-recall curves for spectral features, textural features and integrated features
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4. Conclusion and future work

We present an effective retrieval method that integrates
spectral and textural features for hyperspectral images. For
spectral features, we introduce three strategies to estimate the
number of needed end-members when using N-FINDR to
extract the end-members. For textural features, we propose an
improved color texture descriptor that has been demonstrated
to be effective for hyperspectral image retrieval. The
experiments show that integrated features outperform spectral
features measured by several performance metrics. In
addition, the experiments also indicate that textural features
can be used as complementary information for hyperspectral
image retrieval, particularly for image categories that have
regular textural structures.

In future, a more powerful end-member determination
strategy allowing for different image categories will be studied,
and integration of semantic features to bridge the semantic
gap will be considered as well.
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