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13.1 Introduction

Forest stands, as the basic units in forest management, play a pivotal role in understanding
the function and service of the forest system. A stand is a contiguous area that contains a
number of trees that are relatively homogeneous or similar in species composition or age
and different from adjacent areas (Lindenmayer and Franklin 2002). Several parameters
of the stand are of particular interest to foresters, including tree density, stand basal area,
stand diameter, stand height, crown closure, stand volume, stand table, and site index.
Traditionally, to acquire those parameters, field plots with a random, stratified, or system-
atical sampling scheme have to be designed and measured, which is usually expensive
and labor-intensive. Nevertheless, timely and accurately obtaining the stand information
is critically important for updating the forest inventory (Spurr 1948) and for conducting
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ecological studies with those parameters as the input (Palace et al. 2007). As remote
sensing imagery is more readily accessible, information gathering becomes more frequent
and cost-effective.

In the 1940s, visual interpretation of medium- and large-scale aerial imagery for forestry
emerged (Brandtberg 1999). However, the manual interpretation method is usually time-
consuming, labor-intensive, and biased by the interpreter’s experience, which to a great
extent triggered the development of automated or semiautomated methods for individual
tree recognition. With the increasing availability of very-high-resolution (VHR: meter or
submeter level) imagery, the development of automated computer-based photo interpre-
tation has been spurred (Gong et al. 1999), and various algorithms have been developed
for automatically delineating individual trees, which basically falls into four major types:
local maximum (LM)-based methods (Blazquez 1989; Dralle and Rudemo 1996), contour-
based (CB) methods (Gougeon 1995; Pinz et al.1993), three-dimensional (3D) model-based
methods (Gong et al. 2002; Sheng et al. 2001), and template matching (TM)-based methods
(Pollock 1996; Tarp-Johansen 2002).

The LM method attempts to detect the treetops by finding the local maximum of the
image with the assumption that the peak of the tree-crown reflectance is located at or
very close to the treetop (Brandtberg and Walter 1998). Despite being fast and simple, it
performs poorly as image illumination conditions vary. The TM method characterizes the
tree morphology at different locations of the image by considering the trees’” geometric
and radiometric properties with a series of models. With the information gained, the TM
procedure (Pollock 1996) is implemented to search for the locus of best matching trees.
In comparison, 3D-based methods have been utilized by fewer researchers. Sheng et al.
(2001) applied parametric tree-crown surface model-based image matching to obtain an
improved tree-crown surface reconstruction. Gong et al. (2002) developed an interac-
tive tree interpreter for the semiautomatic tree-crown segmentation as an improvement.
This method, however, has to determine the treetop locations separately on the left and
right epipolar images to be fully automated. The CB method searches for the delimiter
between tree crowns and their background by following the intensity valleys underly-
ing the image (Gougeon 1995) or by detecting the crown boundary with edge-detection
methods (Brandtberg and Walter 1998). Edge-detection methods are seldom applied in
tree-crown delineation mainly because of two difficulties. On the one hand, intensity
changes vary with the scale. At the finer scale, tree branches are the major components
accounting for the changes in intensity, whereas at the increasing coarser scale, tree
internal structures are gradually suppressed and a tree crown tends to merge with its
neighbor (Brandtberg and Walter 1998). In that sense, the clusters of trees are where the
changes occur. Hence, finding the appropriate scale for delimiting the individual tree-
crown boundary is difficult. Considering that tree crowns tend to have different sizes
within the forest stand, it is impossible to choose a scale applicable for all the individual
trees. Accordingly, information on multiple scales should be investigated and integrated
in order to more accurately delineate the individual tree crown. On the other hand, the
edge-detection method can only create raw primal sketches as a low-level image pro-
cessing method. Incorporating the expert knowledge or biological knowledge about the
tree-crown shapes into high-level individual tree-crown delineation is inevitably crucial
for producing a more accurate result.

To bridge the gap between edge detection and tree-crown delineation, three objectives
are set in this study: (1) to incorporate the multiscale scheme for enhancing tree-crown
boundaries while suppressing excessive texture inside; (2) to locate treetops with consid-
eration of both geometry and radiometry information; (3) to develop a more advanced
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two-stage tree-crown detection method, namely edge detection followed by marker con-
trolled watershed segmentation. Hopefully, with the multiscale preprocessing method
and the two-stage approach, treetops can be more accurately located and tree-crown
boundaries can be more efficiently delineated.

13.2 Study Sites and Data Preparation
13.2.1 Study Sites

The study area is a young ponderosa pine forest stand located at 38°53'42.9"N,
120°37'579"W, adjacent to Blodgett Forest Research Station, a research forest of the
University of California, Berkeley. The stand has the following characteristics: an average
diameter of 9.81 cm at breast height (DBH), a density of 420 stems/hectare, and an average
height of 4.05 m. In 2000, a precommercial thinning took place and most of the shrubs and
grass were cut down. The dominant species thereafter in the stand was almost the 10- to
11-year-old ponderosa pine (Pinus ponderosa).

13.2.2 Data Preparation

A 1:8000 aerial photograph was acquired by an aerial camera with a focal length of
152.9 mm in May 2000, under the uniform cloud cover condition. Then it was scanned
at 1000 dpi, with a 20.3 cm spatial resolution digital image produced. A subset image
with the size of 500 x 500 pixels was chosen in this study, approximately a ground area
of 10,404 m? (Figure 13.1). A total of 58 trees, identified both on the ground and on the
aerial image, were selected in the subset image. For each tree, the crown diameter was

FIGURE 13.1
The scanned aerial photograph in our study area.
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measured on the ground in two directions: one along the maximum axis and the other
along the perpendicular direction. As reference data, the radius of the tree crown can
then be calculated by averaging the two measurements. More details of the data can be
found in Wang (2010).

13.3 Methods

The tree-crown delineation algorithm can be divided into three stages. The first stage
applies the scale-space theory to preprocess the image in the multiscale scheme for
enhancing the true tree-crown boundaries (Wang 2010). The second step utilizes an edge-
detection method to obtain primal tree-crown boundaries (Wang et al. 2004). The third
stage can be separated into two main parts: treetop marker selection and marker-controlled
watershed segmentation (Wang et al. 2004). The following sections describe each step in
detail. Further information can be found in Wang et al. (2004) and Wang (2010).

13.3.1 Enhance Tree-Crown Boundaries

To produce accurate crown delineation, the tree-crown information should be investigated
at multiple scales. Wavelet-based methods (Mallat 1989) based on scale-space theory can
be applied to decompose the original information with multiresolution approximation. By
exploring the evolution of the edges, the true tree-crown boundaries can be distinguished
from edges that correspond to the tree branches and twigs, and thus, textures of the true
tree can be strengthened, while those within a single tree will be suppressed.

13.3.1.1 Dyadic Wavelet Decomposition

Scale-space theory aims at making significant structures and scales explicit (Lindeberg
1993). The idea is to link low-level features detected at different scales in scale space,
thus facilitating the identification of high-level objects (Lu and Jain 1992). By convolving
the original image with the transformed and dilated wavelet, the original image can be
decomposed as one approximation image together with various difference images at dif-
ferent scales. The advantages of the wavelet decomposition include no correlation among
images of different scales and the acquisition of local edges” information with coefficients
of the wavelet orthonormal basis expansion.

In this study, the cubic spline function mentioned in Mallat (1989) was adopted as the
scaling function or as a low-pass smoothing filter. The wavelet function can be consid-
ered as the derivative of the smoothing function with orthonormal characteristics. Since
calculating the wavelet coefficients at every possible scale is impractical, the dyadic wave-
let decomposition with only scales of the power of 2 was used. At each decomposed level,
four wavelet coefficients, namely approximate, horizontal, vertical, and diagonal coeffi-
cients, can be obtained, and then the gradient magnitude (Equation 13.1) and orientation
(Equation 13.2) can be calculated with the purpose of quantifying the evolution of edge
pixels from different sources, that is, tree crown or branches, across the scale space.

Megge = (W3 ) +(Wy (13.1)
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Acdge = arctan(%) (13.2)

2]

where M,
W, stand for the horizontal and vertical coefficients, respectively, in the wavelet decompo-

denotes the gradient magnitude and A,q,. is the gradient orientation. W)} and

edge edge

sition at the scale 2/.

13.3.1.2 Edge Probability with the Magnitude Information

With the wavelet decomposition coefficients, the gradient magnitude can be obtained at
each scale and the threshold can be set for separating the edge pixels from the background.
However, using a single threshold to judge the edge pixel is apparently inappropriate or
inefficient on a complex forest image. Edge probability, from another perspective, provides
more information than the single threshold method and can distinguish the edge pixel
more accurately.

Scharcanski et al. (2002) modeled the gradient magnitude of background-related pixels
with a Rayleigh probability density function (Equation 13.3). Similarly, the magnitude of
edge-related pixels can also be modeled by the Rayleigh probability density function with
the variance of edge pixels (Equation 13.4). With those two probabilities, the overall prob-
ability of a pixel being the gradient magnitude of r is shown in Equation 13.5.

P, (r/background) = ;2 exp™’ /2 [G{Jackground ]2 (13.3)
G{)ackground ]
P, (r/edge) = ——exp" /2| oLy | (134)
[G(Jedge :|
P (r)= w{;ackgmmdP]» (r/background) +(1- w{,ackgmund)Pj (r/edge) (13.5)

where P(r/background) is the probability of a pixel having gradient magnitude equal to 7,
given that it belongs to a background pixel at the scale of 2/, and G{)ackgmund is the standard
deviation of a background pixel’s gradient magnitude at the scale of 2. It is also the same
for P(r/edge) and Gédge. w{gackgmund is the prior probability of a pixel being background or
noise.

To calculate P, (r), three parameters, G{;ackgmund, Gédge, and w{;ackgmund, have to be known
first. A typical method for solving the unknown parameters is using the maximum like-
lihood function (Equation 13.6). Then from the Bayes theorem, the probability of a pixel
belonging to the edge, given the gradient magnitude being 7, can be calculated using
Equation 13.7. As a result, the gradient magnitude will be replaced with p(edge/r) in the
following process of enhancing the tree-crown boundaries.

[wlj)ackground ’ Gt];dge ’ G{Jackground ] =argmax (H I)] (7" )) (136)
(ecigeyn) = U Witz ) P(0/ed5e) 137)
p(r)
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13.3.1.3 Scale and Geometric Consistency Constraints

Since texture information within the tree crown, that is, branches or twigs, is hard to
distinguish from that of true tree crown with the edge probability at a single scale, the
evolution of pixels along various scales is checked with the assumption that true-crown
boundaries will consistently exhibit a large edge probability, while pixels with undesired
texture will only show a large edge probability in a small range of scales. Harmonic mean
(Equation 13.8) is chosen in this case to evaluate the scale consistency with the aim of
further enhancing the true tree-crown texture and suppressing the undesired ones.

M+1
1 1 1

B, (edge/r) " P (edge/r) " By, (edgerr)

P, (edge/r) = (13.8)

where p;(edge/r) is the edge probability at the scale 2/, p,,,,(edge/r) is the edge probability
at the scale 27", and M + 1 is the total number of scales that are included in this analysis.

Besides the scale consistency constraint, tree crowns should also satisfy the condition of
geometric consistency, since tree crowns are usually curved in shape and the orientation
along the tree-crown boundary should not change significantly. Using Equation 13.2, the
gradient direction of each pixel can be assigned and evaluated. A typical example of edge
pixels is shown in Figure 13.2 with the gradient direction denoted by an arrow. Thus, the
edge probability p,(edge/r) can be updated by assigning the weight by the Gaussian func-
tion along the gradient direction. The geometric consistency tends to augment the true
tree-crown boundary by strengthening the edge pixels with a continuous smooth curve
and suppressing the isolated ones. Finally, an inverse wavelet transformation can be used
to reconstruct the image with enhanced tree-crown boundary for the subsequent edge
detection and tree-crown delineation.

13.3.2 Edge Detection

A forest image is usually composed of tree crown, understory vegetation, and bare soil.
Masking out nontree areas and retaining tree-crown objects are inevitably the first step

FIGURE 13.2
An example of tree crown’s gradient direction of the boundary pixels.
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for individual tree-crown recognition. Edge-detection methods, by deriving the initial
boundary of the tree crown, can achieve this purpose to a large extent. However, cur-
rent edge-detection methods can only be applied to a single band. Hence, we applied the
intensity—hue—saturation (IHS) transformation to the original aerial-colored image and
utilized only the intensity image in the subsequent edge detection.

The Laplacian of the Gaussian (LOG) operator was selected in this study for detecting
the edge of the tree crown. The LOG method can be partitioned into two parts. The first
part involves a Gaussian smoothing for removing the noise and intensity variation by vir-
tue of a tree’s internal structure. For the second part, the pixels corresponding to the zero
of the second derivative of the smoothed image were marked as edge pixels, since in an
image, an edge indicates the intensity discontinuity and can be captured by the derivative
function. The LOG detector can be written as (Marr and Hildreth 1980)

1 x2 +1? x2 + 12
LOG(x,y):—nG4 [1_ 265/ ]exp(—sz) (133)

The smoothing scale ¢ in the LOG method implies the minimum width of the edge
that can be captured. In our study, the smoothing scale is one pixel, which represents the
smallest tree-crown diameter in the image by visual inspection. The LOG operator can
also bring about artifacts or phantom edges. To distinguish those phantom edges from the
true edges, a method proposed by Clark (1989) was used to remove the phantom edges for
the subsequent tree-crown delineation.

With the edge pixels detected by LOG operator, a series of closed contours, indicating
the tree-crown boundaries, can be formed with an eight-connectivity scheme. However,
those contours obtained may not represent the individual tree crown and typically three
scenarios may be included, namely isolated trees, slightly touching trees, or tree clumps
(Brandtberg 1999) (Figure 13.3). Isolated single trees tend to form a single circular-shaped
contour, while slightly touching trees or tree clumps are more inclined to have irregular
or oblong shapes. Hence, further segmentation of those contours is necessary for obtaining
the tree-crown boundary on an individual basis. In our study, we identified the treetops
within each contour first and then utilized the treetop information as a guide for acquiring
the final individual tree-crown boundaries.

13.3.3 Treetop ldentification

We treat each closed contour as an object, and for each object, we determine the number
of trees it contains by locating the treetops. Treetops can be identified by their unique
radiometric and spatial characteristics. With regard to the radiometric intensity, it
usually varies in different parts of the tree and reaches the highest on the uppermost

O O
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FIGURE 13.3
Three typical cases of objects after edge detection: (a) isolated trees, (b) slightly touching trees, and (c) tree
clumps.
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sunlit portion of the tree crown. Hence, in our study, a local nonmaximum suppression
method was adopted to obtain the treetops in each contour. As regards the spatial char-
acteristic, a treetop is located at or near the center of the tree crown when it is viewed
from angles near nadir. Correspondingly, an LM distance method was applied to obtain
another set of treetops. The intersection of the two sets of treetops by both methods is
identified as the authentic treetop and will be denoted as the marker for the following
segmentation.

13.3.3.1 Treetop Detection Based on Radiometric Characteristics

A local nonmaximum suppression method was utilized to detect the pixel with highest
radiometric intensity for each crown object as the treetop, based on the gray values of
the intensity image from IHS transformation. Specifically, it will use a sliding window
to assign a value of one to the center pixel only if all the surrounding pixels’ gray values
within the window are less than that of the center pixel for locating the treetops (Dralle
and Rudemo 1996) and finally create a binary image in which pixels representing the
treetops were labeled one and all others were labeled with a value of zero. With respect
to the sliding window, the size of the window is vitally important for accurately and
efficiently locating the treetop. If the window size is too small, the tree crown with large
radius may be assigned more than one treetop. Contrarily, if the window size is too
large, trees having smaller crowns may not be detected and assigned a treetop. In our
study, a relatively small size of sliding window (3 X 3 window of pixels) was selected
with the purpose of not missing the small treetop. For those false treetops assigned by
this method, they can be identified and filtered out by the subsequent algorithm in view
of treetops’ spatial properties.

13.3.3.2 Treetop Detection Based on Spatial Characteristics

Apart from the treetops selected by virtue of the radiometric features, treetops can also
be identified from a spatial perspective. An LM transformed distance method can be
applied for locating the treetops spatially, with the assumption that treetops are located in
the vicinity of the center of the tree crown from the near nadir view. The method can be
divided into two parts. First, the geodesic distance between the pixels within each object of
closed-contour and the set of exterior pixels was calculated. Then, the regional maximum
of the distance image was extracted and labeled as a treetop.

The geodesic distance is a concept borrowed from mathematical morphology by
defining the distance between two pixels p and g within the set A as the length of the
shortest path connecting p and g in A and defining the distance from any pixel in set A to
its complementary set as the path joining that pixel in A with the nearest pixel in the com-
plement of A. To calculate the distance between each interior pixel and the set of exterior
pixels, an elementary disk structure element (SE; 3 x 3 window of pixels whose values are
equal to 1) was defined by considering the eight-connected neighborhoods of the center
location, as opposed to an elementary cross SE with only four-connected neighborhoods.
As a consequence, the distance can be measured only along connected paths defined by
the SE, and the length of each step is determined by the value of each pixel in the SE.
Normally, an SE can represent the geometry of the object to be measured and is usually
built as a small window of pixels with values either 0 or 1 (Soille 2003).
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With morphologically transformed distance calculated for each interior pixel in the
object, a resultant distance image, signifying the distance from that interior pixel to the
nearest exterior pixel, can be formed. Accordingly, the regional maximum of the distance
image for each object can be extracted. As for the regional maximum, it is defined as a
connected group of pixels with a single distance value, and for each pixel in the group,
the distance value is greater than or equal to that of the surrounding eight-connectivity
neighborhood. As a consequence, the regional maximum is usually located near the center
of the object, and thus, those pixels corresponding to the regional maximum are marked
as treetops spatially.

13.3.3.3 Marker Image Generation

Two sets of treetops can be formed in light of the radiometric and spatial characteris-
tics. To satisfy two conditions simultaneously and set the final treetop marker for the
subsequent segmentation, we intersect two sets of treetops for each object by testing the
proximity of each treetop detected by the nonmaximum suppression method to that of
the maximum-distance method. If a treetop identified by the gray-level method is also
located within a 3 x 3 window of the surrounding distance-based treetop, it will be
labeled as the final treetop. For example, in Figure 13.4, there are five treetops identified
by the gray-level nonmaximum suppression method, four of which coincidentally fall
into the window of the surrounding distance-based treetops. Thus, those four treetops
were recognized as the final treetops and markers, while the fifth one was filtered out
as a pseudo treetop.

13.3.4 Marker-Controlled Watershed Segmentation

With the treetop markers generated by satisfying both radiometric and spatial charac-
teristics, we utilized the marker-controlled watershed segmentation method with the
goal of obtaining the individual-based tree-crown boundaries in each object. Watershed

FIGURE 13.4
Treetops detection with both (a) radiometric—Markers from gray level—and (b) distance—Markers from
geodesic distance—methods.
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segmentation, as a nonlinear image processing method in mathematical morphology, was
tirst introduced by Beucher and Lantuejoul and later defined mathematically by both
Meyer and others (Pesaresi and Benediktsson 2001). The advantage of this method is to
selectively preserve geometric or structural information while fulfilling the required tasks
on the image. A further variant of this method is the so-called marker-controlled water-
shed segmentation, and it can be understood as follows. If we treat the gray-scale image
as a topographic model, each pixel in the image will stand for the elevation at that point
(Vincent and Soille 1991) and treetop markers will be the local maxima. By inverting the
gray tone of the image, those markers will become the local minima lying in the valley.
If water is introduced into this topographic model, each valley will collect water with the
marker as the starting point, until the water runs over the watershed and infiltrates into
the adjacent valley. Each watershed of the valley corresponds to one closed contour con-
taining unique marker, and it can partition the whole area into different catchment basins.
Consequently, those contours generated by the segmentation become the desired bound-
aries of individual tree crowns within the object.

One crucial factor for generating the desired contour is its correlation with the gray-
level image patterns. In our study, we determine the tree-crown boundary by creating
the geodesic skeleton with the use of the influence zones (Soille 2003). To begin with, the
geodesic distance from each interior pixel to each treetop marker is calculated with the
elementary disk SE. Next, the influence zone for a specified marker K; is determined by
counting the pixels whose geodesic distance to K; is smaller than that to any other markers.
Subsequently, the individual-based tree-crown boundary can be formed by delimiting the
boundaries of those influence zones.

Compared to the traditional marker-controlled watershed segmentation method, our
study has two apparent advantages. On the one hand, our segmentation task performs
on the individual objects, as opposed to the entire image of the traditional segmentation
method. In this way, we can eliminate the error that would otherwise be introduced by
the background. On the other hand, the traditional marker-controlled watershed segmen-
tation often leads to severe over-segmentation because of the presence of spurious local
minima and maxima (Soille 2003); we tackled this problem by defining the marker first in
view of the treetops’ characteristics.

13.4 Results

To enhance the tree-crown boundaries, dyadic wavelet decomposition was imple-
mented with the first three levels (2!, 2%, 2%) considered. Accordingly, the gradient mag-
nitude and direction were calculated in virtue of the wavelet coefficients obtained at
each level. Edge probability could then be derived at the scale 2!, 22, and 23 according
to Equation 13.7, and the results are shown in Figure 13.5. By analyzing the evolution
of image gradients over the scale space, we found that tree-crown boundaries were
effectively strengthened, while the excessive textures that resulted from tree branches
and twigs were largely suppressed. Moreover, the scale consistency was checked in
terms of the harmonic mean, and the geometric consistency was conducted by using the
gradient directions. With the updated edge probability achieved, the magnitude of the
horizontal and vertical wavelet coefficients was adjusted and then an inverse wavelet
transform was carried out.
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(@)

FIGURE 13.5
Edge probabilities at the scale 2! (a), 22 (b), and 23 (c).

(a) (b)

FIGURE 13.6
Enhanced tree-crown boundaries from the multiscale wavelet decomposition (a) and the shaded relief of differ-
ence between the enhanced and original image (b).

After the edge-enhanced image was acquired (Figure 13.6), it was subtracted from the
original image for illustrating the effect of the wavelet decomposition method. A shaded
relief image denoting the difference between two images is presented in Figure 13.6. With a
significant number of small textures within the tree crowns standing out in the difference
image, our method can be proved efficient in strengthening the tree-crown boundaries, as
well as in suppressing the textures inside. The enhanced image greatly alleviates the dif-
ficulty in the subsequent treetop detection and tree-crown delineation.

With the enhanced version of the image, we applied a two-stage approach, an edge-
detection method followed by the marker-controlled watershed segmentation, and the
final delineated tree crowns are shown in Figure 13.7. To evaluate our result, a total of
58 trees were selected and measured from the ground; 56 trees were correctly identified
from the automated tree-crown delineation method, while the other two were unde-
tected. For those 56 correctly identified trees, we first extracted the crown area from the
image and then converted it to the radius based on a circular crown shape assumption.
Subsequently, the radius derived from the image and that measured in the field were
compared and regressed (Figure 13.8). The slope value in the regression model is 0.875,
signifying that the crown size was underestimated from the automated method. The
reason can be attributed to the fact that pixels on the tree-crown boundaries were not
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FIGURE 13.7
Final delineated tree crowns from the marker-controlled watershed segmentation method.

Photo vs. field measurement of crown size
250

200

150

100

Automated estimation (cm)

50

0 50 100 150 200 250

Field measured crown radius (cm)

FIGURE 13.8
Regression of the tree-crown radius measured on the ground and that from the image based on 56 identified
trees.

obviously detectable and may not be well recorded in the image. The R? in this case is
0.68, and it indicates that 68% variance of the automatically delineated tree-crown size
can be explained by the regression model. The unexplained variance can actually be
caused by the noise introduced when a circular shape was used to convert the irregular
crown area to the radius value.

© 2008 Taylor & Francis Group, LLC



© Weng, Qihao, Jul 09, 2013, Remote Sensing of Natural Resources

Taylor and Francis, Hoboken, ISBN: 9781466556935

Automated Individual Tree-Crown Delineation and Treetop Detection 235

13.5 Discussion

With the developed multiscale scheme, promising tree-crown delineation was achieved.
Out of 58 field-surveyed trees, 56 were identified in the image with the automated method.
A comparison of crown size for 56 trees with R? value of 0.68 indicates the feasibility of
delineating the tree crown from remote sensing imagery. Hence, it is necessary to perform
an effective enhancement before the tree-crown boundary was delineated.

Traditionally, treetop extraction and tree-crown delineation are treated as separate proce-
dures by most researchers. However, the solution of one part can usually assist in deriving
the solution of the other. Owing to their close relationship, the integration of two parts tends
to produce a more accurate result. In our algorithm, we filtered out spurious local minima
and maxima by locating the treetops and then utilized those treetops as markers for delin-
eating the tree-crown boundaries. The combination of two parts helps avoid the problem of
over-segmentation to a great extent. Therefore, the derivation of treetop is indispensable and
essential for determining the success of the individual tree-crown delineation.

With respect to the treetop detection, we utilize two methods by considering both radio-
metric and geometric characteristics. Our results have shown that the morphological infor-
mation plays a crucial role in detecting the pseudo treetops generated by the radiometric
nonmaximum suppression methods. However, existing algorithms have not effectively
exploited such shape information. By superimposing a geometric restriction on the tradi-
tional gray-level method, we actually reduced the errors to a large degree.

By using treetops as the markers for delineating the individual tree-crown boundaries, we
have effectively overcome the shortage of the traditional watershed segmentation method
and generated a more accurate boundary image. Although our algorithm takes advantage of
both spectral and spatial information for locating treetops and separating individual trees,
there are still some potential problems deserving further research. One problem is the limi-
tation of the assumptions. The spatially morphological algorithm for locating the treetops
can be implemented only with the assumption that treetops are located around the vicinity
of the center of a crown. However, it can only be satisfied within 15° of the nadir, and it may
not be applicable to the trees outside of this range. To build a more robust algorithm, differ-
ent treetop models based on the location of trees can be incorporated. Another problem is
the inflexibility of the algorithm. In our methods, the ¢ value in the LOG edge detection, the
window size of the nonmaximum suppression, the window size of the treetop intersection
method, and the SE were all assigned a fixed value by virtue of the minimum tree-crown
size. However, those parameters could be varied. Different scenarios should be evaluated to
produce a more accurate result. Finally, tree-crown boundaries are sometimes inconsistent
with gray-scale boundaries. The problem does not affect the trees viewed from the near-
nadir direction, but may haunt those from outside the near-nadir range. For those regions,
the silhouettes detected from edge-detection methods are sometimes inconsistent with the
real tree-crown boundaries, which may be solved by using a 3D-based model.

13.6 Conclusion

In summary, tree-crown boundaries can be effectively enhanced and the internal texture
can be largely suppressed by applying the multiscale wavelet decomposition method.
The scale and geometric consistency check are critically important in the process of
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enhancement by accounting for the tree’s radiometric and morphological characteristics.
Treetops can be more accurately detected by exploring the radiometric and spatial char-
acteristics simultaneously. However, the spatial information is rarely utilized for locating
the treetops because of the difficulty of expressing shape information in discrete image
space. With the aid of mathematical morphology, we developed an approach to integrate
the spatial information with the traditional radiometric method, which filtered out the
pseudo treetops to a great extent. Tree crowns and treetops are closely related parameters,
and the integration of two parts tends to produce a more accurate delineation result. By
locating treetops with their special characteristics and using them as the markers for gen-
erating tree-crown contour, the marker-controlled watershed segmentation method sets a
good example for combining treetop detection and tree-crown delineation under a unified
framework. The result of marker-controlled watershed segmentation achieves a promising
agreement with that from the field survey, indicating the feasibility of obtaining the
tree-crown area from remote sensing imagery. In future work, a more robust tree-crown
algorithm should be developed and tested in a range of forests, especially the undisturbed
forest that has not been thinned.
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