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Abstract— Cloud detection in remote sensing images is a
challenging but significant task. Due to the variety and complexity
of underlying surfaces, most of the current cloud detection
methods have difficulty in detecting thin cloud regions. In fact,
it is quite meaningful to distinguish thin clouds from thick clouds,
especially in cloud removal and target detection tasks. Therefore,
we propose a method based on multiscale features-convolutional
neural network (MF-CNN) to detect thin cloud, thick cloud,
and noncloud pixels of remote sensing images simultaneously.
Landsat 8 satellite imagery with various levels of cloud coverage
is used to demonstrate the effectiveness of our proposed MF-CNN
model. We first stack visible, near-infrared, short-wave, cirrus,
and thermal infrared bands of Landsat 8 imagery to obtain the
combined spectral information. The MF-CNN model is then used
to learn the multiscale global features of input images. The high-
level semantic information obtained in the process of feature
learning is integrated with low-level spatial information to classify
the imagery into thick, thin and noncloud regions. The perfor-
mance of our proposed model is compared to that of various
commonly used cloud detection methods in both qualitative and
quantitative aspects. Compared to other cloud detection methods,
the experimental results show that our proposed method has a
better performance not only in thick and thin clouds but also in
the entire cloud regions.

Index Terms—Cloud detection, convolutional neural net-
work (CNN), deep learning, multiscale features (MF), remote
sensing images.

I. INTRODUCTION

ITH the rapid development of remote sensing
Wtechnology, remote sensing images have been
widely used in the fields of earth observation [1], resource
survey, natural disaster prediction, environmental pollution
monitoring, etc. However, because of the significant influence
of atmospheric density and cloud layer change on remote
sensing processes, most of the remotely sensed images
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encounter different levels of cloud contamination. Global
cloud data from the international satellite cloud climatology
project-flux data (ISCCP-FD) show that more than 66% of
the earth’s surface area is often covered with cloud [2]. The
attenuation and even loss of some image information caused
by cloud not only reduces the quality and utilization of remote
sensing data dramatically but also causes the difficulty of the
analysis and application of remote sensing images [3], [4].
In order to improve the usability of remote sensing images,
it is indispensably essential to conduct cloud detection before
any task-specific remote sensing analysis.

In recent years, a large number of cloud detection meth-
ods have been proposed. These methods can be roughly
divided into two categories: threshold-based methods and
classification-based methods. Threshold-based methods are to
determine proper thresholds of spectral reflectance or bright-
ness temperature via specific channels for different sensors to
identify cloud regions. Over the years, several cloud detection
algorithms have been developed, such as ISCCP cloud mask
algorithm, AVHRR Processing scheme Over Clouds, Land,
and Ocean cloud mask algorithm, Clouds from the Advanced
Very High Resolution Radiometer cloud mask algorithm, CO»
slicing and Moderate Resolution Imaging Spectroradiome-
ter (MODIS) cloud mask algorithm [5]-[9]. These threshold
methods are widely adopted for cloud detection because of
their high accuracy and reliable robustness. However, for com-
plex land surface regions of various cloud cover types, it is dif-
ficult to identify proper thresholds to detect cloud accurately.

For moderate-spatial-resolution and low-spectral-resolution
sensors like Landsat, many automated cloud detection algo-
rithms have been developed based on a single Landsat image.
Iris [10] and Iris ef al. [11] had proposed the Automated
Cloud Cover Assessment system to estimate the percentage of
clouds for each Landsat scene. Oreopoulos et al. [12] assessed
the performance on Landsat-7 images of a modified version of
a cloud-masking algorithm originally developed for clear-sky
compositing of MODIS images at northern midlatitudes.
Huang et al. [13] proposed an automated masking algorithm
for cloud and cloud shadow detection using clear forest pixels
as a reference to define cloud boundaries in a spectral-
temperature space and predicting the shadows according to
cloud height and sun illumination geometry. However, due to
the lack of ability to distinguish warm clouds or snow/ice
in high latitude areas, Zhu and Woodcock [14] proposed
Function of Mask (Fmask) algorithm to acquire the cloud mask

0196-2892 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0003-3763-5600
https://orcid.org/0000-0002-9316-7568

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

through the scene-based threshold and probability mask, and
calculate the cloud shadows by object matching. Nevertheless,
the thresholds calculated based on lots of absolutely clear-sky
pixels of single Landsat imagery in the Fmask algorithm are
not constant, so limited by spectral domains, Fmask algorithm
may not work correctly for complex surfaces, such as urban,
snow, and mountain [15], [16]. Zhang et al. [17] utilized haze
optimized transform (HOT) response level as an alternative
measure of cloud optical depth and estimated the variation
of incident visible radiation reduction in the corresponding
shadow patch by the spatial distribution of the HOT response
in a given cloud patch. Although this method realized spatial
matching between cloud and cloud shadow objects automati-
cally, the HOT threshold selected manually would affect the
detection results directly.

A series of significant successes in the field of image classi-
fication [18] has been achieved due to the breakthrough in pat-
tern recognition, machine learning, and computer vision [19].
There is no need to determine large-scale thresholds or opti-
mal eigenvalues for classification-based methods, which have
been increasingly applied to detect cloud-cover regions [20].
Movia et al. [21] combined some effective indexes with unsu-
pervised classification methods to realize the shadow detection
and removal in RGB VHR images for land-use analysis.
Surya and Simon [22] performed color transformation and
generated a ratio image using the spectral image rationing
technique, and then applied the fuzzy C-means clustering
method to detect clouds. Tian et al. [23] proposed probabilis-
tic neural network classifiers to track cloud temporal changes
in a sequence of images by utilizing the temporal contextual
information, and Maximum likelihood criterion was adopted
in both training and updating schemes. Vivone et al. [24]
introduced a novel penalty term within the classical maximum
a posteriori probability—Markov random field approach to
reducing the high misclassification rate for pixels close to
cloud edges. Through leveraging geometric, texture or color
information of the tagged images, classification-based cloud
detection methods have been continuously advanced in recent
years to improve the training process for more accurate cloud
detection [25]—-[30].

In comparison with the threshold methods, the
classification-based cloud detection methods have distinct
advantages in automating the detection process and improving
the detection performance. In [31], the spectral, texture,
and structural features of each pixel had been extracted
artificially, and then, the integrating feature information was
used for realizing cloud and cloud shadow detection in fuzzy
autoencoder neural network. However, this method must select
the favorable features manually and require a large number
of feature calculations to achieve good detection accuracy.
In order to extract features automatically, convolutional neural
network (CNN) [32]-[38] has recently been applied in target
detection, which regards pixels or segmented super-pixels
as research objects. In the above methods, the features of
cloud, cloud shadow, or snow are automatically extracted
by these different models, and the model parameters are
optimized through training samples to realize the detection
task. In addition, through the process of sample training,
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TABLE I

SUMMARY OF DIFFERENT CLOUD DETECTION METHODS
BASED ON DEEP LEARNING

Based on pixels or

Deep learning method Detect contents

objects
. cloud, cloud
Fuzzy AutoEncode [31] pixels shadow
Optimizing CNN [32] pixels cloud
CNN ( based on CIFAR-10) objects cloud
[33]
. cloud, cloud
CNN (based PSPNet) [34] pixels shadow
Deep Convolutional ixels cloud. snow
Network [35] p ’
Residual CNN [36] pixels haze removal
CNN [37] objects cloud
Two-Branch CNN [38] objects thin cloud, thick
cloud

the complex nonlinear relationship between the label value
and the input image can be appropriately constructed. More
detailed information on existing cloud detection methods
based on deep learning is shown in Table I.

However, the task of distinguishing thin clouds from thick
clouds, which is crucial for thin cloud removal and other
image analysis, has not been paid enough attention by the
majority of existing cloud detection methods. The thin clouds
are translucent, and their spectral information always mixes
with the underlying surface, which brings challenges to cloud
detection. Xie et al. [38] regarded the super-pixels as research
objects, and then used the center of super-pixels in the image
block as a basic unit to conduct the training and classification
based on a two-branch CNN model. Although this method can
be used to detect thin cloud regions, the features extracted in
this model only contain the information of local neighborhood
within small image patch, which ignores the multiscale con-
textures in the classification process. In addition, the detection
efficiency of thin and thick cloud is too dependent on image
segmentation accuracy.

In response to the deficiencies of the cloud detection
methods discussed above, in this paper, we stack the vis-
ible, near-infrared (NIR), shortwave infrared (SWIR), ther-
mal infrared (TIR) bands of the Landsat 8 sensor to create
the combination images of 10 bands. Then, we take each
pixel of combination images as the basic research unit and
construct the multiscale features-convolution neural network
(MF-CNN). In our model, the multiscale global features of the
thick and thin clouds will be extracted automatically, which
contains the global context information of various aggregation
levels. In addition, the high-level semantic information in
different scales produced by feature learning will integrate
with corresponding low-level spatial information in the process
of classification, and the contextures at multiscale will assist
the detection for thick and thin clouds.

The remainder of this paper is organized as follows.
In Sections II and III, data source and proposed methodology
for cloud detection are described. Section IV presents the
cloud detection experiment and corresponding results. Further
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Fig. 1. Image display with different bands. (a) NIR-R-G combination image.
(b) SWIR image. (c) Cirrus image. (d)TIRS image.

discussions are arranged in Section V. Finally, Section VI gives
a summary of our work.

II. MATERIALS

Landsat 8 satellite remote sensing imagery is widely used
in the image analysis because of its multiple bands, high reso-
lution, wide coverage, and short revisits. Nevertheless, the fre-
quent cover of the clouds greatly limits the usage of captured
images. Therefore, cloud detection is an essential part of the
image processing for Landsat 8 images. The Landsat 8 satellite
images can be freely downloaded from the USGS website.

Considering the thin cirrus clouds are difficult to detect just
by visible and thermal infrared bands, Gao and Kaufman [39]
and Zhu et al. [40] proposed that the strong water vapor band
(1.36-1.38 um) is very effective in separating the thin cirrus
from the ground surface. Therefore, in order to improve
the separation of thick and thin clouds, the cirrus band is
indispensable. In addition, as the TIR and SWIR bands contain
sufficient spectral and temperature-related information of thick
and thin clouds, we stack the visible, NIR, SWIR, cirrus, and
TIR bands to obtain the combination images with 10 bands.
The spatial resolution of visible, NIR, SWIR bands is 30 m,
while the thermal infrared bands have a spatial resolution
of 100 m, which will be resampled to 30 m. The correction
level of the experimental images is Level 1A. Table II shows
the information of the selected bands.

As shown in Fig. 1(a), the thick and thin cloud pixels in
the NIR and visible bands have distinct spectral characteristics,
which can be easily separated from the background. As for the
SWIR band, the similar spectral characteristics are displayed
in Fig. 1(b). Besides, Fig. 1(c) shows that the cirrus band
is apparently valid for the detection of cirrus clouds. Due
to the lower temperature of the cloud regions, the thick

TABLE 11
INFORMATION OF COMBINATION IMAGE BANDS

Band number Band width (um) Band name  Spatial resolution(m)
Band1 0.43-0.45 Coastal 30
Band2 0.45-0.51 Blue 30
Band3 0.53-0.59 Green 30
Band4 0.64-0.67 Red 30
Band5 0.85-0.88 NIR 30
Band6 1.57-1.65 SWIR 1 30
Band7 2.11-2.29 SWIR 2 30
Band9 1.36-1.38 Cirrus 30

Band10 10.6-11.19 TIRS 1 30(resampled)
Bandl1 11.5-12.51 TIRS 2 30(resampled)

and thin clouds correspond to the dark regions in the TIR
band image [Fig. 1(d)]. In order to leverage various spectral
and temperature information contained in Landsat 8 images,
the above-described bands will be used in our cloud detection.

In our work, a total of 107 Landsat 8 satellite images are
downloaded from the USGS website, which is mainly selected
according to different cloud coverages and the underlying
surface. The acquisition dates of these images are distributed
between March 2014 and September 2018. In fact, due to
the wide coverage of the Landsat 8 satellite, the entire image
of Landsat 8 satellite may not be fully covered by clouds.
Most of the images will have a wide range of clear pixels
such as vegetation, bare soil or water. However, for the
follow-up experiments of thick and thin cloud detection, this
kind of wide-ranging continuous noncloud pixels will make
the training data unbalanced completely, thus failing to achieve
better detection. Therefore, for each scene, we select the
cloud containing regions or representative underlying surfaces
carefully, and the size of which varies from 300 by 400 pixels
to 900 by 1000 pixels.

According to the needs of the subsequent experiment,
the 107 regions from different Landsat 8 satellite images need
to be divided into a test set and a training set. The training
data are derived from 63 images, and the test set is from the
remaining 44 images. In the process of dividing data sets, both
of them take into account various cloud coverage information
and underlying surface environment. Most of their images con-
tain both cloud and noncloud regions. Cloud regions include
small, medium, and large size clouds; the underlying surface
environment includes urban buildings, vegetation, agricultural,
water, and snow.

Limited by the performance of hardware devices, the 63
band-combination images of the training set in our study are
divided into image blocks with the size of 128 x 128. A total
number of 1236 Landsat 8 image blocks constitute the training
data set. Similarly, the segmentation of 44 combination images
in the test set produces 806 image blocks with the size of
128 x 128. In order to prove the effectiveness of the proposed
method, the two data sets include thin and thick clouds
with different cloud contents, as well as clear pixels that are
easily confused with clouds, such as snow-covered surfaces
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Fig. 2. Model structure of MF-CNN.

TABLE III
DETAILED INFORMATION OF IMAGES

Image parameters Landsat 8
Product level Level 1
Number of bands 10
Spatial resolution 30 m
Block size(pixel) 128*128

1236 (from 63 Landsat images)
806 (from 44 Landsat images)

Number of blocks in training set
Number of blocks in test set

and bright buildings. The summarized information of these
images is provided in Table III.

III. METHODOLOGY

Deep learning has recently achieved a huge breakthrough
in artificial intelligence and computer vision areas. As a
deep learning method, CNN has improved the performance
dramatically for a wide range of computer vision tasks such as
image classification, saliency detection, object recognition, and
semantic segmentation [41], [42]. Fully CNN (FCNN), pro-
posed by Shelhamer ef al. [43], can conduct intensive predic-
tion without fully connected layers. This structure enables the
segmentation map to generate images with any size and also
improves the processing speed compared with the traditional
CNN. Based on the principle of FCNN, MF-CNN is designed
to extract the multiscale global features to characterize thick
and thin clouds in the combination images of Landsat 8 satel-
lite. In addition, the integration of low-level spatial information
and high-level semantic information provides more detailed
information of clouds so as to realize the cloud detection in
pixel level more accurately.

A. Structure of MF-CNN

As shown in Fig. 2, the overall model structure is divided
into three parts, which contains feature map module, multi-

32%32*512 |

scale module, and up-sampling module. Each feature map in
the model is a 3-D array with the size of height x width x
depth, where height and width are spatial dimensions, and
depth is the feature or channel dimension. In this paper,
Conv# denotes a convolutional layer, Maxpool# denotes a
max pooling layer, and Avepool# is an average pooling layer.
A nonlinear rectified linear unit function is denoted by Relu#,
a batch normalization layer is by Bn#, and a dropout layer is
by Dropout#.

In the feature map module, the first layer is the combined
image block with the size of 128 128 10, which is regarded
as the input data. The Conv*2 means that there are two
convolutional layers, and the structure of this module can be
described concisely as

Input(128 x 128 x 10)—Conv1(64 x 64 x 64)—Relul
—Conv2(64 x 64 x 96)—Bn2—Relu2—Conv3(64 x 64

x 128)—Bn3—Relu3—Maxpool—Conv4(32 x 32 x 192)
—Bn4—Relud—Conv5(32 x 32 x 256)—Bn5—Relu5
—Maxpool—Conv6(16 x 16 x 256)—Bn6—Relu6—Conv7
(16 x 16 x 512)—Bn7—Relu7.

In the module mentioned above, the size of filter is 3 x 3
in all convolutional layers, the stride of which is two pixels
in Convl and one pixel in other convolutional layers. The
max-pooling layers perform max pooling over 2 x 2 spatial
neighborhoods with a stride of two pixels on the output of the
convolution layers. Therefore, through this module, the height
and width of the output layer are one-eighth of the combined
image block.

In the multiscale module, the output features of Relu7
(16 x 16 x 512) is regarded as the input layer. To obtain the
multiscale global features that are characteristic of thick and
thin clouds in combination images, we set different sizes of
average pooling filter. Each average pooling layer is followed
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by convolutional layers and bilinear interpolation (denoted
by Bl#) so that four parallel feature maps with the same height
and width of Relu7 can be obtained. We can describe this
process as

Relu—Avepool(16)—Conv_m1(1 x 1 x 256)—BI
—Conv_ml, (16 x 16 x 256)
Relu—Avepool (8)—Conv_m2(2 x 2 x 256)—BI
—Conv_m2;(16 x 16 x 256)
Relu—Avepool(4)—Conv_m4(4 x 4 x 256)—Bl
—Conv_m4, (16 x 16 x 256)
Relu—Avepool(2)—Conv_m8(8 x 8 x 256)—Bl
—Conv_m8>(16 x 16 x 256)

concat(16 x 16 x 1024).

The sizes of parallel average pooling filters are 16 x 16,
8 x 8, 4 x4, 2x2 respectively, and the stride of corresponding
filter is the same as its height. For each branch, the stride
of filter in convolutional layers is one pixel, and the filter
size of the first convolutional layer is 1 x 1, and the other is
3 x 3. Finally, by concatenating (denoted by Concat#) the four
output convolutional layers, the global feature maps containing
multiscale information can be obtained.

After the learning process of feature map module and
multiscale module, the low-level spatial information of com-
bination images has been transformed into high-level semantic
information. In order to achieve better detection accuracy of
thick and thin clouds than the model with only high-level
information, the high-level semantic and low-level spatial
information are applied simultaneously in the up-sampling
module. The Concat# layer in multiscale module is connected
with the feature layer Relu7(16 x 16 x 512). Through the
bilinear interpolation, the up-sampling feature map (denoted
by Upsampling#) will become two times larger, and the
process can be described as

Concat(16 x 16 x 1024) 4+ Relu7(16 x 16 x 512)—Conv_up1

(16 x 16 x 512)—Relu—Upsampling1(32 x 32 x 512)

4+ Relu5(32 x 32 x 256)—Conv_up2(32 x 32 x 256)

—Bn—Relu—Upsampling2(64 x 64 x 256) + Relu3(64

x64 x 128)—Conv_up3(64 x 64 x 128)—Bn—Relu

—Upsampling3(128 x 128 x 128)—Dropout

—Conv_out(128 x 128 x 3).

In this module, the symbol “+” represents the connection
between the layers, and the size of filter in the convolutional
layers is 3 x 3. The final up-sampled result is followed by a
dropout layer to avoid over-fitting, and through a convolutional

layer with 1 x 1 filter, the classification result of thick and thin
cloud in pixel level will be obtained.

B. Training of MF-CNN

In the training stage, the combination images with spectral
information of nine bands in the training set are regarded as
input data to train MF-CNN model. First, through the parame-
ters setting of initial weight in the whole model, we can extract
the feature map of input image with the size of one-eighth
of the input size in the feature map module. Combined with

multiscale module, the extracted features are subsampled to
different global scales. Through the interpolation and concate-
nation, the multiscale global information is obtained. Finally,
the combination of high-level semantic and low-level spatial
information in the up-sampling module accomplishes the ini-
tial classification of each pixel. To minimize the difference
between the MF-CNN-based classification result and ground
truth the Adam (adaptive moment estimation) optimizer [44]
is used to adjust the model parameters dynamically.

Multiple parameters in the MF-CNN need to be initialized
in the training stage. The filter weights of each convolutional
layer are initialized by drawing randomly from Gaussian
distribution with mean of zero and standard derivation of 0.01,
and the biases in convolutional layers are initialized with the
constant of 0.1. We use Adam optimizer with initial learning
rate as 0.001. The exponential decay rates for the first and
second moment estimates are set to 0.9 and 0.999, respectively.
In order to avoid over-fitting, the dropout rate is set to 0.5,
which means that half of the features are reduced randomly
during the training stage. The batch size is chosen as 12, and
the training of model is up to 50 x 200 iterations.

Through the trained parameters of the MF-CNN model,
the multiscale global features of any combination image with
the size of 128 x 128 x 10 can be extracted. Combined the
extracted high-level semantic information with the low-level
spatial information, the input image is classified into thick
cloud, thin cloud, and noncloud in pixel level.

C. Accuracy Assessment

This paper evaluates the detection performance of thick and
thin clouds from different aspects, both qualitatively and quan-
titatively. Qualitative assessment is to visualize the cloud clas-
sification masks generated by the MF-CNN model, and then
compare the performance of different methods from visual
interpretation. As for the quantitative assessment, the effec-
tiveness of different methods is described in three aspects: thin
cloud, thick cloud, and the entire cloud (thin cloud and thick
cloud) detection accuracy. First of all, the precision and recall
values of thick and thin clouds are calculated, respectively,
and then the indexes of right rate (RR), error rate (ER),
false alarm rate (FAR), and the ratio of RR to ER (RER)
are applied to evaluating the detection accuracy of all cloud
regions (including thick cloud and thin cloud)

precision = CP/DP (1)
recall = CP/ GN 2)

where CP is the number of pixels correctly detected as
cloud, DP is the total number of pixels detected as cloud,
and GN is the number of cloud pixels in ground truth. For
each cloud detection method, the precision and recall values
of thick and thin cloud will be calculated separately. The
higher precision and recall values indicate better performance
of cloud detection methods. There may be some tradeoffs
between precision and recall values in evaluating our results.
In this paper, we use the F_Score evaluation index to integrate
these two measures

F_Score = 2 x precision x recall/(precision + recall) (3)
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where F_Score combines the evaluation results of precision
and recall, when F_Score is higher, it shows that the detection
method is more effective.

In addition, the algorithm performance for the entire cloud
detection also needs to be evaluated. The definition of RR is
the same as the recall. The ER and the FAR are defined as
follows:

ER = (CN + NC)/TN ()
FAR = NC/GN (5)

where CN is the number of cloud pixels detected as noncloud
pixels, NC is the number of noncloud pixels detected as
cloud pixels, and TN is the total number of pixels in the
input image. The higher values of RR and lower values of
ER or FAR indicate a better cloud detection method. However,
the above situation is too ideal. Most of the cases are high
RR accompanied by high FAR, or low ER accompanied by
low RR. Thus, it may not be comprehensive to evaluate the
effectiveness of the model using only one of them. Here we use
RER, which is defined as the RER, to integrate the measures
of RR and ER in model evaluation

RER = RR/ER. (6)

1V. EXPERIMENTS AND RESULTS

The training procedures are conducted by using python
on the PC with Intel Xeon CPU E3-1240 at 3.70 GHz and
Quadro K620 VGA compatible controller, and the experiment
is implemented under the TensorFlow framework.

A. Experiment Settings

As described in Section II, this paper uses a total
of 2042 blocks of 10-band combined images with 128 pixels
by 128 pixels for the experiment, containing various underly-
ing surface information. Among them, 1236 image blocks in
the training set are obtained from the 63 Landsat § satellite
images, and 806 image blocks in the test set are obtained from
the other 44 scene images.

We define the translucent cloud as thin cloud, and the cloud
that completely covers the surface information is defined as
thick cloud. The ground truth of thick, thin, and noncloud
pixels is marked manually. In order to evaluate the effective-
ness of the MF-CNN model in detecting thick cloud and thin
cloud of different shapes and sizes, various levels of cloud
coverage images are contained in the training set and test set.
At the same time, in addition to vegetation and water, clear
pixels (noncloud pixels) in the two data sets include underlying
surfaces that are easily confused with clouds, such as bright
buildings and snow-covered ground.

To illustrate that the proposed method can avoid the bright
ground surface (clear pixels) being misclassified into cloud
pixels, the proportion of cloudless image blocks in the test data
set is slightly higher, while the distribution of image blocks
with different cloud coverage ratios are roughly similar in the
two data sets. The details of the image blocks distribution are
summarized in Table IV.

In the training set, there are 1816966 thick cloud pixels,
1885608 thin cloud pixels and 16548050 clear pixels. The
test set contains 903 698 thick cloud pixels, 1057859 thin
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TABLE IV

IMAGE DISTRIBUTION OF CLOUD COVERAGE
IN TRAINING AND TEST DATA SETS

Cloud Number in Ratio in Number in Ratio in
coverage training set training set test set test set
rate = 0% 294 23.8% 311 38.6%

0% <rate <
300 24.2% 177 22.0%
10%
10% < rate <
’ 164 13.3% 80 9.9%
20%
20% < rate <
155 12.6% 65 8.0%
30%
30% <rate <
113 9.1% 60 7.5%
40%
40% < rate <
210 17.0% 113 14.0%
100%
02.1.0) T I | - Train thick
2 = Train thin
5 ©1502) | I | - Test thick
& = Test thin
£ oo e .
£ oo I —
T
(0.0.05) I |
0% 20% 40% 60% 80% 100%

Ratio of image blocks

Fig. 3. Ratio of image blocks with different thick and thin cloud coverages.

cloud pixels, and 11243947 clear pixels. It can be seen that
in each data set, the proportion of thin cloud and thick cloud
pixels is not much different. After analyzing the number
distribution of image blocks with different cloud coverages
in the two data sets, we calculate the proportion distribution
of the image blocks with different coverages of thin clouds
and thick clouds, respectively (shown in Fig. 3).

In this paper, we propose the MF-CNN model to learn the
multiscale global features of various thick and thin clouds
by integrating high-level semantic information with low-level
spatial information. In the training stage, the parameters in the
MF-CNN model are optimized through the Adam optimizer.
The trained model is utilized to classify the combination
images into thin, thick, or no-cloud regions in the test stage.
To evaluate the effectiveness of our proposed MF-CNN model,
we replace the multiscale module with the conventional con-
volutional layer and abandon low-level spatial information
with different scales. The above structure based on MF-CNN
is regarded as self-contrast model, which will not contain
any multiscale feature information. Besides, the FCNN model
mentioned in [35] is also applied to comparison experiment,
which obtains image features through multiple convolutional
and pooling layers, and then different feature layers are
up-sampled to the same size of original input image directly,
and the final concatenated features are applied to distinguish
cloud and snow by softmax classifier in the end. In addition
to the methods discussed above, SVM [45] and RF [46] are
also compared with our proposed method.
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Fig. 4. Spliced visual cloud detection results of Landsat 8 image with our method. (a) Original combination image with NIR, red, green, band (p118_r38 and
20141003). (b) Spliced visual cloud detection results of Landsat 8 image (p118_r38 and 20141003) with our method. (c) Original combination image with
NIR, red, green band (p129_r43 and 20161021). (d). Spliced visual cloud detection results of Landsat 8 image (p129_r43 and 20161021) with our method.

B. Detection Performance of Thick and Thin Clouds

According to the training and testing principle of MF-CNN
model in Section III, each image block with the size
of 128 128 will be divided into three categories (thick clouds,
thin clouds, and nonclouds). Through the splicing of classified
image blocks, the detection results of whole Landsat 8 remote
sensing images can be obtained, and Fig. 4 shows that the
detection results of thin and thick cloud in land areas and
coastal areas, surface, red areas indicate thick cloud pixels, and

yellow areas indicate thin cloud pixels. It can be seen from
Fig. 4 that there is no obvious stitching line in the splicing
classification results. Whether it is in land areas or coastal
areas, the overall detection effect of thin and thick cloud is
good, even the small isolated thin and thick clouds can be
detected accurately.

To comprehensively present the detection results of thin
and thick cloud with different methods in detail, Figs. 5-9
(detection area is 9.6 x 9.6 km?) show visual results of
cloud detection with different methods in the situation of
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TABLE V

DETECTION PERFORMANCE OF DIFFERENT METHODS FOR THICK
AND THIN CLOUDS. COLUMNS PRECISION_C, RECALL_C,
AND F_SCORE_C DESCRIBE THICK CLOUDS, WHILE
PRECISION_T, RECALL_T, AND F_SCORE_T
DESCRIBE THIN CLOUDS

Methods precision_c  recall_¢  F_Score_c¢  precision_t recall_t F_Score t
SVM 0.8648 0.7984 0.8303 0.7409 0.5879 0.6556
RF 0.8628 0.8194 0.8406 0.7396 0.5923 0.6578
FCNN 0.8701 0.7620 0.8125 0.7011 0.5943 0.6433
Self-Contrast 0.8666 0.6461 0.7403 0.5899 0.4784 0.5283
Our Method 0.9074 0.8946 0.8920 0.7813 0.7693 0.7753

various underlying surface (water, urban buildings, snow)
easily confused with the cloud and different cloud amounts.
Figs. 5-9 present the original combination images (NIR—red-
green band), the ground truth value, and detection results of
FCNN method in [35], self-contrast method, RF method, SVM
method, our proposed method, and Fmask method in turn. The
Fmask algorithm does not distinguish between thin and thick
clouds, so entire clouds (thin and thick clouds) are represented,
respectively. The black areas in the figure indicate the ground
in white. From Figs. 5-9, we can see that the detection
results in thick and thin clouds by our proposed method
are the most similar to the ground truth values, while other
methods have more detection errors. In general, the detection
results are better when the underlying surface is vegetation.
For other underlying surfaces that are easily confused with
clouds, there are more cases of commission and omission.
The detailed analysis will be further discussed in Section V.
In addition to the visual results, we detect the thick and
thin clouds in the 806 test images and quantitatively evaluate
the detection performance through three evaluation indexes,
namely, the precision values, recall values, and F_Score.
The statistical results of detection performance by different
methods are given in Table V.

The precision_c and precision_t indicators represent the
average precision values for thick and thin clouds, respectively,
and the recall_c and recall_t indicators are the average recall
values for thick and thin clouds. However, the evaluation
results of the above two indicators are inconsistent in some
cases, so the F_Score_c and F_Score_t considering the above
two indicators are calculated for thick and thin clouds. If the
F_Score is higher, the performance of the corresponding
detection method is better.

In Table V, compared with the other four methods, the pro-
posed method has significant improvement in precision, recall,
and F_Scores values in thick clouds and thin clouds, which
demonstrates the MF-CNN model proposed in this paper has
obvious superiority in cloud detection. In general, the detection
result of thick clouds for each method is better than that
of thin clouds. The main reason is that thick clouds have
distinct spectral characteristics, which can be distinguished
from the background. However, the spectra of semitransparent
thin clouds are more difficult to be distinguished from the other
objects, as spectra of these thin clouds are generally mixed
with those of various underlying surface objects. In addition,
in Table V, the recall values of thick clouds and thin clouds
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in the four comparison methods are lower than their precision
values, which means that these methods have omissions in
the detection of thick or thin cloud pixels even if they have a
certain degree of detection accuracy. Among these comparison
methods, the detection result from the self-contrast method
is the worst, whether in thin cloud detection or thick cloud
detection. That is mainly because, in the self-contrast method,
rich low-level spatial information and multiscale global fea-
tures are lost in the process of feature extraction, and only
the high-level semantic information is included in the final
classification, which makes the detection result lack detailed
information and is only suitable for rough detection.

C. Detection Performance of Entire Cloud Regions

After evaluating the detection efficiency of thick and thin
clouds, the comprehensive detection performance of all cloud
pixels still needs to be evaluated. In addition to the four com-
parison methods mentioned above, the classic Fmask cloud
detection method is added for comparison, and Figs. 5(h)-9(h)
indicate the detection result of Fmask. It can be seen from
the visual detection results, the method does not confuse the
clouds with bright buildings (Fig. 7), water (Fig. 8), and snow
(Fig. 9), but there is significant over-detection of the clouded
areas. In order to further quantify the detection effect of the
five comparison methods and the proposed method in the
entire cloud areas (thin cloud and thick cloud regions), several
accuracy assessment measures, namely, the RR, ER, FAR, and
RER, are used in this paper. We calculate the average of RR,
ER, FAR, and RER for all the test images and the results are
shown in Table VI.

As can be seen from Table VI, the RR of the Fmask is
very high, indicating that the method is quite effective in
cloud detection, but the high RR value is accompanied by
the high ER value (about 1 to 3 times of other methods)
and incredibly high FAR value (about 10 to 30 times of
other methods). This means that the method has obvious over-
detection in cloud detection. Through comparing the cloud
detection effect of the other four selected models with our
proposed method, the RR value of the self-contrast model is
the lowest, accompanied by higher ER value, which results
in the worst performance in RER index (the lowest RER
value) when considering both the RR and ER. On the con-
trary, the RER index of our method considering both RR
and ER is markedly higher than that of all other methods.
Although FAR of our model is slightly higher, our detection
method guarantees the lowest ER value while ensuring the
higher RR value. It demonstrates that the proposed method
not only has advantages in the detection of thin clouds and
thick clouds but also has superiority for the detection of entire
cloud regions.

V. DISCUSSION

A. Qualitative Analysis of the Proposed Method
in Cloud Detection

As shown in Figs. 5-9, in general, the thick and thin cloud
detection results of our proposed method are the most similar
to the ground truth, while the results of the SVM and RF
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Fig. 5. Visual comparisons of different cloud detection methods in the partial scene of Landsat 8 (p129_r43 and 20161021). (a) Original combination image
with NIR, red, green band. (b) Ground truth image. (c) Cloud detection result of FCNN method. (d) Cloud detection result of our method without multiscale
features (self-contrast method) (e). Cloud detection result of RF method. (f) Cloud detection result of SVM method. (g) Cloud detection result of our proposed
method. (h) Cloud detection result of Fmask method.

(h)

Fig. 6. Visual comparisons of different cloud detection methods in the partial scene of Landsat 8 (p119_r40 and 20171002). (a) Original combination image
with NIR, red, green band. (b) Ground truth image. (c) Cloud detection result of FCNN method. (d) Cloud detection result of our method without multiscale
features (self-contrast method). (e) Cloud detection result of RF method. (f) Cloud detection result of SVM method. (g) Cloud detection result of our proposed
method. (h) Cloud detection result of Fmask method.

methods are discrete and have discernible detection errors in are smooth and can hardly capture the subtle information
thin-cloud regions. As for the method in [35] and self-contrast in the shape of thick and thin clouds. All of the above
structure based on MF-CNN model, their detection results cloud detection methods are much more accurate in detecting
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Fig. 7. Visual comparisons of different cloud detection methods in the partial scene of Landsat 8 (p119_r43 and 20180122). (a) Original combination image
with NIR, red, green band. (b) Ground truth image. (c) Cloud detection result of FCNN method. (d) Cloud detection result of our method without multiscale
features (self-contrast method). (e) Cloud detection result of RF method. (f) Cloud detection result of SVM method. (g) Cloud detection result of our proposed
method. (h) Cloud detection result of Fmask method.

“

® g (h)
s of different cloud detection methods in the partial scene of Landsat 8 (p118_r40 and 20141003). (a) Original combination im¢
with NIR, n band. (b) Ground truth image. (c) Cloud detection result of FCNN method. (d) Cloud detection result of our method without multisc:

features (self-contrast method). (e) Cloud detection result of RF method. (f) Cloud detection result of SVM method. (g) Cloud detection result of our proposed
method. (h) Cloud detection result of Fmask method.

thick clouds than thin clouds because the spectral features and are usually mixed with different underlying surfaces,
of thick clouds are more distinctive and differentiable from it is more difficult to identify those regions covered by thin
the background. While the thin clouds are semitransparent clouds.
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Fig. 9. Visual comparisons of different cloud detection methods in the partial scene of Landsat 8 (p123_r32 and 20160214). (a) Original combination image
with NIR, red, green band. (b) Ground truth image. (c) Cloud detection result of FCNN method. (d) Cloud detection result of our method without multiscale
features (self-contrast method). (e) Cloud detection result of RF method. (f) Cloud detection result of SVM method. (g) Cloud detection result of our proposed

©) S ®

method. (h) Cloud detection result of Fmask method.

TABLE VI

DETECTION PERFORMANCE OF DIFFERENT
METHODS FOR ENTIRE CLOUDS

Methods RR ER FAR RER
SVM 0.8340 0.0549 0.0517 15.19
RF 0.8440 0.0601 0.0275 14.05
FCNN 0.8236 0.0637 0.0371 12.93
Self-Contrast 0.7361 0.0887 0.0290 8.30
Fmask 0.9923 0.1049 0.6341 9.46
Our Method 0.9340 0.0385 0.0693 24.22

As for the Fmask detection method, it can detect the entire
cloud areas (thin clouds and thick clouds). Since the method
takes into account the relative positional relationship between
the clouds and the cloud shadows, the method does not
cause confusion between the bright underlying surface and
the clouds, which can be reflected primarily in Figs. 7-9.
However, as can be seen from Figs. 5 and 6, this method has
obvious over-detection problems in the cloud regions. In fact,
the commission errors are mainly from the cloud boundary
because Fmask would make a buffer of three pixels for each
cloudy pixel (Zhu and Woodcock, 2012).

Through visually comparing the results between model
detection results and ground truth values, the methods of
SVM and RF can distinguish thick cloud pixels accurately
in combination images to a certain extent, but the thick

cloud detection results usually contain many thin cloud pixels
(as shown in Fig. 5). As for the thin cloud regions, both of
these two methods are difficult to identify them accurately.
Some complex or bright background pixels are misclassified
to thin clouds (as shown in Figs. 7 and 9 and partially
discrete thin cloud pixels similar to noise in Figs. 5 and 6),
and some thin cloud pixels are missed in the process of
detecting (as shown in Figs. 5-8). The cloud detection results
of these two methods are quite similar. The SVM and RF
algorithms are based on spectral feature similarity to classify
each pixel. They identify the cloud regions only through the
spectral features of each pixel, without taking into account
the structural neighborhood information. In addition, these
relatively simple model structures have limited feature learning
for complex scenes, such as spectral information mixture of
thin clouds and the ground surface, or the bright underlying
scene that is easily confused with clouds.

As for the detection method of FCNN in [35] and self-
contrast method, only the general distribution of thin clouds
and thick clouds can be detected. The edges of cloud regions
are not distinguished accurately. In Fig. 5, the FCNN detec-
tion method works well on the thick clouds, but there are
apparent misclassification and omission for the thin cloud
pixels in Figs. 6-8. In addition, the detection results of iso-
lated or marginal thin clouds are poor. That is because
feature layers constructed at different scales are sampled up
to the size of input image simultaneously. Multiscale feature
concatenation layers have no progressive learning process via
convolutional layers, which omits much structural information
in the image and renders over-smooth edge of clouds. Besides,
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the lack of multiscale global features in the learning strategy
leads to the loss of detailed information on thin and thick
clouds, while the detection results of self-contrast model are
worse, which can only detect the approximate range of thin
and thick clouds, as shown in Figs. 5 and 6. Sometimes, for
smaller clouds, it even has significant omissions (as shown
in Figs. 6 and 8). In addition, for bright buildings that are
easily confused with clouds, this method most likely divide
them into thin clouds, as shown in Fig. 7. The reason for
the above phenomenon is that the feature information of the
thick clouds or semitransparent thin clouds mixed with the
underlying surface has certain similarities with the bright
buildings. Though the self-contrast model has the process
of progressive learning via convolutional layers, it does not
extract multiscale global features of thick and thin clouds
through the multiscale module, nor does it integrate low-level
spatial information, which will result in the loss of spatial
information and reducing the ability of feature learning in
the model. The dearth of spatially structured information
and the limitations of feature learning capabilities reduce its
detection accuracy, and therefore, the contours of the detected
thick or thin cloud regions are different from the ground
truth values. Although the above two cloud detection methods
based on CNN have errors in the process of thin and thick
cloud detection, they are easier to learn the effective features
of clouds and snow from the two SWIR and cirrus bands
because of their better feature learning ability than RF and
SVM algorithms, which is conducive to distinguishing snow
and clouds.

In summary, our proposed model is more similar to the
ground truth, which is attributed to the multiscale global
features learning strategy that learns the context information
of cloud regions at multiscale. In addition, the low-level
spatial and high-level semantic information integrated into
the progressive up-sampling learning process supplement the
information. The proposed model is more capable of detecting
cloud regions of different types and can achieve more accurate
detection results.

B. Quantitative Analysis of the Proposed Method’s
Effectiveness in Cloud Detection

In the quantitative comparison in Section IV, we only
compare the average detection accuracy of different methods
for all the test images in pixel level. To further illustrate
the effect of different detection methods in thin and thick
cloud detection, we calculate the F_Score of thick and thin
cloud for each test image containing cloud and compare the
detection result of each selected method with that of our
proposed method in the level of image blocks. The distribution
of detection accuracy for test images is shown in Fig. 10.

As shown in Fig. 10, the horizontal and vertical axes
represent the F_Score value of thin clouds and thick clouds
of test images, respectively. The blue points are the detection
results of our proposed method, and the points of other four
colors are the results of comparison methods. Compared with
other methods, the F_Score values of test images detected by
our proposed method are concentrated in the upper right corner
of Fig. 10. It indicates that our proposed model can detect
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thin and thick clouds more accurately than other methods.
The overall distributions of F-Score value, such as SVM, RF,
FCNN model, and self-contrast method, are more fragmented,
indicating these methods are less stable in cloud detection.
Besides, the general distribution trend of F-Scores for these
methods is obviously shifted to the left, which means the
detection performance of thin clouds is poorer. As for the
thick cloud detection results, considering the compactness
and distribution position in the coordinate system, the thick
cloud detection results of the other four comparison methods
are slightly worse than that of the method proposed in this
paper. This conclusion is also consistent with the analysis in
Section IV.

Due to the inability to distinguish thin clouds from thick
clouds in the Fmask algorithm, its detection result is not
evaluated in the above discussion. To evaluate the effectiveness
of our proposed model in detecting entire cloud regions,
we calculate the RR, ER, FAR, and the RER values of each
test image block containing cloud.

According to the distribution of these values, we divide
the RR, ER, FAR, and RER values into different intervals,
respectively, and then count the number of test images within a
certain range for each cloud detection method. The horizontal
axis represents different numerical intervals, the vertical axis
represents the number of test image blocks in the correspond-
ing interval, and different color bars correspond to the six
different detection methods. The distributions of the four eval-
uation indexes for different methods are shown in Figs. 11-14.

In Fig. 11, the RR values of our proposed model and Fmask
algorithm are mainly distributed in the intervals of 0.95 to
1.00 and 0.90 to 0.95, while the values of the RF, SVM,
FCNN, and self-contrast methods are mainly distributed in the
other four lower accuracy intervals. The self-contrast method
performs the worst in terms of right detection rate, and the
most of values in the entire cloud detection is less than 0.75.
The above results also mean that the method proposed in this
paper and the Fmask algorithm is more advantageous in terms
of the right detection rate in entire cloud (thick and thin cloud)
detection.

Although the Fmask algorithm has a high accuracy rate, this
method has obvious disadvantages in ER and FAR. As shown
in Figs. 12 and 13, the ER values of the Fmask algorithm are
mainly distributed in the intervals of 0.06 to 0.08 and greater
than 0.08. The FAR values of total test blocks are mainly
distributed in the intervals of 0.15 to 0.2 and greater than
0.2. This means that the Fmask algorithm has obvious over-
detection problems in the process of cloud detection, which
will detect noncloud pixels as clouds. The ER values of the
self-contrast method are distributed evenly in the first four
intervals with smaller ER values, mainly in the interval of
larger than 0.08, while the other three methods (FCNN, RF,
SVM) are generally uniformly distributed in the five different
intervals. The method proposed in this paper performs well
in ER and concentrates on the first three intervals with
lower ER. As for the FAR in cloud detection of test block
images containing clouds, the FAR values of FCNN, self-
contrast, RF and SVM methods are mainly distributed in the
first three intervals with smaller values, and our proposed
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Distribution of cloud detection accuracy in test data set. (a) Comparison of our method with FCNN model. (b) Comparison of our method with
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Fig. 11. RR distribution of the test data set.

method is mainly distributed in the third intervals. Yet the
performance of Fmask method is worst in this evaluation
index obviously, which is consistent with the conclusion
in Table VI.

In order to comprehensively evaluate the RR and ER of
different methods, we use the ratio of RR and ER to calculate
the RER, and apply this indicator to measure the effectiveness
of different methods in the entire cloud detection. In Fig. 14,
we can see that the RER values of FCNN, RF, and SVM are
concentrated in the first three intervals, and the self-contrast
and Fmask methods are mainly distributed in the smallest

®Our method
EFCNN
% Self contrast|
RF
ESVM
®Fmask

Image Number

0.06-0.08 >0.08

0-0.02 0.02-0.04

Numerical distribution range of ER

0.04-0.06

Fig. 12. ER distribution of the test data set with cloud.

interval. In contrast, the RER values of our proposed method
have almost no image block in the smallest interval and mainly
distributed in the largest intervals.

Overall, according to the analysis in Figs. 11-14, the
proposed method has a better performance in thin and thick
cloud detection. In addition, the classic Fmask algorithm is
added as a comparison method in the process of entire cloud
detection. The analysis of four evaluation indexes shows that
although the Fmask algorithm performs well on the RR index,
it is accompanied by a high ER value because of over-detection
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in the cloud. The method proposed in this paper has apparent
advantages in ER and RER indexes while ensuring the RR
value.

VI. CONCLUSION

For Landsat 8 satellite images, the MF-CNN model pro-
posed in this paper has greatly improved the accuracy of thin
cloud detection in pixel-level while achieving high accuracy
of thick cloud detection. As for the entire cloud detection task,
the proposed method ensures high RR while controlling the
ER and avoids the over-detection problem. In addition, even
in the bright underlying surface easily confused with clouds,
such as bright buildings or snow, the method proposed in this
paper will not cause false detection.

On the one hand, multiscale global features extracted from
the MF-CNN model can characterize thin or thick clouds
from different scales, which is beneficial to obtain more
abundant features for the subsequent classification task. On the
other hand, the integration of low-level spatial and high-level
semantic information in the gradual up-sampling learning
process supplements the traditional spectral-based features
at multiscales for the detection targets, which facilitates the
identification of complex clouds with various types and shapes.

In order to evaluate the effectiveness of the MF-CNN model,
the cloud detection results of traditional machine learning,
deep learning, and classic Fmask methods are used for exper-
imental comparison. To further evaluate the performance of
the proposed method, the F_Score of thick and thin clouds,
and RR, ER, FAR, RER of the entire cloud are calculated to
describe the performance of the detection methods compre-
hensively. Through both qualitative and quantitative analysis,
we found that the detection performance of our method on
thin, thick, or entire cloud detection is superior to that of other
methods.
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Despite the high accuracy achieved by this paper, identify-
ing thin-cloud regions are a challenging task. In the future, we
consider integrating the spectral information with the contour
information of the thin and thick clouds, and employ deeper
convolutional network model to obtain more abundant cloud
features to improve the performance of cloud detection further.
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