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A B S T R A C T

Vegetation phenological events, especially peak foliage coloration, are among the ecological phenomena that are
most sensitive to climate change. Compared to spring seasonally recurring events, fall phenology remains much
less understood. Remotely sensed monitoring of fall phenology provides a wealth of opportunities to understand
the underlying processes and mechanisms. However, the gradual change of foliage color in the fall season makes
it challenging to remotely estimate critical phenological transition dates. Particularly, the transition date for
foliage peak coloration cannot be adequately captured via conventional curve fitting-based phenological models.
Also the lack of consensus among the conventional models makes it desirable to explore new remotely sensed
representations of the fall phenological process. In this study, we developed an innovative complex network-
based phenological model, namely “pheno-network”, to estimate the fall foliage transition date for peak col-
oration. The pheno-network model characterizes the phenological process through analyzing the collective
changes of spectral signatures along the temporal trajectory. A network measure, moving average bridging
coefficient, is newly designed to estimate the phenological transition date. With Harvard Forest and Hubbard
Brook Forest as reference sites, the results demonstrated that the transition date estimated through the devised
pheno-network model corresponds well with the peak coloration period of the reference sites. The unique
structure of the pheno-network formulated via spectral similarities differentiates the various roles of vegetation
spectral signatures at different phenological stages. This study is the first attempt at introducing network science
to time series remote sensing in modeling the complex phenological processes of vegetation. The innovative
network-based phenological representation shows great potential in improving remotely sensed phenological
monitoring and shedding light on the subsequent modeling of vegetation phenological responses to climate
change.

1. Introduction

Vegetation phenology plays a crucial role in shaping carbon, water,
and energy cycles, and regulating ecosystem functions and biotic in-
teractions (Morisette et al., 2009; Peñuelas and Filella, 2001;
Richardson et al., 2013). This seasonal variation in vegetation foliage
parameterizes land surface process models, numerical weather predic-
tion models, and ecohydrological models for understanding land bio-
physicis, biogeochemistry, and ecosystem dynamic processes (Chen
et al., 2016; Gutman and Ignatov, 1998). In temperate deciduous for-
ests, vegetation phenology has been viewed as a first-order control on
biosphere-atmosphere interactions, and is among the ecological phe-
nomena that are most sensitive to climate and environmental changes
(Keenan et al., 2014; Kramer et al., 2000; Xie et al., 2015). Over the
past several decades, most attention has been devoted to exploring
phenological events at the start of the growing season (e.g., budburst,

leaf-out, and flowering) (Badeck et al., 2004; Clark et al., 2014; Polgar
and Primack, 2011). In contrast, fall phenological responses to en-
vironmental changes remain poorly understood (Gallinat et al., 2015;
Richardson et al., 2013; Xie et al., 2015). However, fall phenology
regulates the length of photosynthetically active periods, mediates ve-
getation feedbacks to the climate system, and has significant implica-
tions for ecosystem management activities (Estiarte and Peñuelas,
2015; Garonna et al., 2014). There is increasing recognition that ad-
ditional work is required for this area (Dragoni and Rahman, 2012;
Richardson et al., 2013). As there are generally large intraspecies
variabilities in leaf coloration at early senescence stages, the timing of
peak foliage coloration has been found to be more responsive to en-
vironmental conditions (Delpierre et al., 2009; Jeong and Medvigy,
2014). According to United States Weather Channel (https://weather.
com/) and field foliage network (https://www.foliagenetwork.com/),
the peak foliage coloration denotes the stage when most/all leaves
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change to yellow or red color, and is defined when the percentage of
colored leaves reaches 60%–95% in this study. The peak foliage col-
oration stage is also of enormous economic importance for the multi-
billion dollar fall foliage tourism industry in northeastern United States
(Rustad et al., 2012). Remotely sensed monitoring of fall phenology,
particularly peak foliage coloration, provides unprecedented opportu-
nities to understand the underlying processes and mechanisms.

During the past decade, a variety of methods have been developed
to quantify seasonal patterns of vegetation growth and senescence at
regional or global scales using Moderate Resolution Imaging
Spectroradiometer (MODIS), Advanced Very High Resolution
Radiometer (AVHRR), and SPOT Vegetation (VGT). Typically, time
series of satellite-derived vegetation index (e.g., normalized difference
vegetation index [NDVI]) throughout the year is constructed to char-
acterize phenological stages of vegetation. Satellite time series are
mostly preprocessed using curve-fitting based phenological approaches
to minimize the effects of cloud contamination and noise.
Representative curve-fitting based approaches include double logistic
functions (Beck et al., 2006; Zhang et al., 2003), asymmetric Gaussian
functions (Jonsson and Eklundh, 2002), adaptive Savitzky-Golay func-
tions (Jönsson and Eklundh, 2004), high order annual spline
(Hermance et al., 2007), Harmonic analysis (Diao and Wang, 2014;
Roerink et al., 2000), and wavelet analysis (Sakamoto et al., 2005). The
smoothed time series can then be employed to estimate phenological
transition dates (e.g., the start of the growing season and the end of the
growing season), using threshold-based methods (Lloyd, 1990; White
et al., 1997), inflection point methods (Moulin et al., 1997), change rate
of curvature (Zhang et al., 2003), autoregressive moving average
methods (Reed et al., 1994), etc. However, the phenological transition
dates identified from different approaches can vary dramatically, which
affects the subsequent modeling efforts and may yield conflicting re-
sults in tracking vegetation responses to climate change (White et al.,
2009). Compared to spring phenology, the gradual change of foliage
color in autumn makes it more challenging to capture critical pheno-
logical transition dates. Further, previous investigations of fall phe-
nology have mainly focused on the onset of leaf senescence or dor-
mancy (Xie et al., 2015; Zhang et al., 2003), few efforts have been
dedicated to the peak coloration stage of foliage. Zhang and Goldberg
(2011) developed a temporally-normalized brownness index to measure
the status of leaf senescence by combining a linear mixture model with
satellite NDVI time series. It assumes that NDVI in a pixel can be lin-
early mixed by that of land surface components (i.e., green and brown
materials). Yet the linear mixture model assumption of NDVI may be
violated, especially in large-scale mapping.

Remotely sensed phenological monitoring has mainly been con-
ducted by tracking the temporal trajectory of vegetation index (e.g.,
NDVI and enhanced vegetation index [EVI]). To date, a wide variety of
vegetation indices have been developed, with each emphasizing a
particular vegetation property. It is often challenging to select an ap-
propriate one, as the use of vegetation index may be limited by its
sensitivity to soil and atmospheric conditions, and saturation in dense
vegetation areas. Delbart et al. (2005) used NDVI and normalized dif-
ference water index (NDWI) to capture the onset of leaf senescence in
boreal regions, and found that these indices were both in poor agree-
ment with in situ measurements. Hufkens et al. (2012) found that es-
timation of phenological transition dates was largely affected by the
selection of vegetation indices (i.e., NDVI, EVI, and excess green index)
in deciduous forest areas. The leaf phenological process is complex with
the concurrent changes of a multitude of vegetation properties (e.g.,
canopy pigment content, cell structure, and water content). Those ve-
getation properties can be characterized by a wide range of spectral
wavelengths (e.g., canopy pigment content from visible bands, cell
structure from near-infrared bands, and water content from shortwave
infrared bands). Thus tracking the collective change of spectral sig-
natures, with consideration of combining dynamics of those vegetation
properties, may provide an alternative solution to model the complex

leaf phenological processes. Diao and Wang (2018) developed a Mul-
tiyear Spectral Angle Clustering (MSAC) model to analyze the temporal
patterns of spectral signatures for constructing a composite image,
where each pixel was acquired from the leaf senescence stage to facil-
itate the detection of invasive species. Yet time series of this expanded
range of spectral information needs to be further explored in char-
acterizing vegetation phenological stages.

The recent development of network science has revolutionized our
understanding of complex systems (Barabási, 2009; Borgatti et al.,
2009; Newman, 2003; Strogatz, 2001). Network science focuses on the
behaviors and dynamics of complex networks, and has gained a sig-
nificant use in a large number of fields, including physical, biological,
and social sciences. A complex network is often represented as a graph
with a set of nodes interconnected together in pairs by edges, such as
social networks, information networks, and biological networks (Eagle
et al., 2009; Isalan et al., 2008; Onnela et al., 2011; Pastor-Satorras
et al., 2014; Rubinov and Sporns, 2010). It provides an abstract network
representation capturing the most fundamental patterns and structures
of a complex system (Newman, 2010). Through examining the structure
of relationships between their constituents, complex networks present a
new viewpoint of predicting the behaviors of complex systems (Albert
and Barabási, 2002). The flexibility of constructing the networks shows
great potential to model the complex phenological process and to es-
timate the critical phenological transition dates. The structure of col-
lections of spectral signatures, characterized by complex networks, may
further our understanding of plant phenological development along the
temporal trajectory. However, the network representation has seldom
been studied in time series remote sensing for phenological estimations.

The objective of this research is to develop an innovative complex
network-based phenological model, namely “pheno-network”, to esti-
mate the fall foliage transition date for peak coloration. Network sci-
ence, for the first time, is introduced into time series remote sensing to
construct the pheno-network model. Through uncovering the temporal
relationships between spectral signatures, the pheno-network model
provides a new prospective in analyzing the temporal trajectory of plant
growth and development. It offers an innovative network-based re-
presentation to estimate critical phenological transition dates, which
can further shed light on how vegetation phenology responds to climate
change and environmental stress conditions. This study uses MODIS
time series data spanning from 2002 to 2013 to demonstrate this new
concept in estimating autumn peak coloration of foliage, with field
reference data from Harvard Forest and Hubbard Brook Forest.

2. Data and methods

2.1. Field measurements of fall foliage peak coloration

To demonstrate the concept of complex networks in estimating fall
foliage peak coloration, this study focuses on two temperate deciduous
forest regions (i.e., Harvard Forest and Hubbard Brook Forest), of which
abundant field measurements of vegetation phenophases have been
collected in a systematic manner. Harvard Forest is located in central
Massachusetts, the northeastern United States (42.54°N, 72.18°W, and
335 to 365 m elevation). The climate is moist temperate, with annual
mean precipitation of 110 cm. Mean July temperature of the site is
20 °C, and mean January temperature is −7 °C. Harvard Forest is a long
term ecological research site, in which spring and autumn phenology of
a suite of woody plant species has been recorded since 1991. For our
studying periods (2002−2013), the percentage of colored leaves and
the percentage of fallen leaves for 14 dominant species in the fall
phenology were observed at 3–7 day intervals (http://harvardforest.fas.
harvard.edu/data-archives). The 14 species were sugar maple (A. sac-
charum), red maple (Acer rubrum), striped maple (A. pensylvanicum), red
oak (Q. rubra), black oak (Q. velutina), white oak (Quercus alba), black
birch (B. lenta), paper birch (B. papyrifera), yellow birch (Betula alle-
ghaniensis), white ash (Fraxinus americana), black cherry (Prunus
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serotina), beech (Fagus grandifolia), black gum (Nyssa sylvatica), and
shadbush (Amelanchier laevis). Those phenological observations were
collected for two to five individuals of each dominant species located
within 1.5 km of the Harvard Forest headquarters, with a total of 57
individuals. For most of dominant species, both overstory and unders-
tory individuals were represented in the collected data. To match with
satellite-derived phenological measures, the species-based field ob-
servations were aggregated to the community level. The average per-
centages of leaf coloration and leaf fall were calculated at each ob-
servation date. Further, the temporal percentage of colored leaves
between observation dates was linearly interpolated to quantify the
extent of foliage coloration and to represent the continuous leaf se-
nescence process.

Hubbard Brook Forest is located within the White Mountain
National Forest in central New Hampshire, the northeastern United
States (43.95°N, 71.70°W, and 222 to 1015 m elevation). The climate is
moist temperate, with annual mean precipitation of 140 cm. Mean July
temperature of the site is 18 °C, and mean January temperature is
−9 °C. Hubbard Brook Forest is within the long term ecological re-
search network. Spring and fall phenological observations in the site
have been collected since 1989 for three dominant species, namely
sugar maple (Acer saccharum), yellow birch (Betula alleghaniensis), and
American beech (Fagus grandifolia). The phenological status of those
species was recorded at 7 day intervals, at nine locations with varying
topographical and watershed characteristics (http://hubbardbrook.
org/data/dataset.php?id=51). Three representative trees of each spe-
cies were surveyed at each location. Unlike the continuous percentage
of foliage coloration recorded at Harvard Forest, the foliage coloration
at Hubbard Brook Forest was measured according to the stage of se-
nescence with an index value (Table 1). At each location, the index was
averaged for the nine trees (i.e., three trees for each dominant species)
for each observation date. The average phenological index was used to
represent the community-level leaf coloration extent. Besides, the index
of colored leaves between observation dates was linearly interpolated
to represent the continuous leaf senescence process.

To date, most fall phenological studies have focused on doc-
umenting intra- or inter-annual variations in the onset of leaf senes-
cence and dormancy. These two phenophases estimated using time
series of EVI were also provided in the MODIS Land Cover Dynamic
product (MCD12Q2). However, fall phenology, ranging from scattered
leaves changing color to all leaves falling down, is a gradual senescent
movement process. Multiple foliage coloration stages, including little/
no change, low coloration, moderate coloration, peak coloration, and
post-peak coloration, have been defined by United States Weather
Channel and field foliage network. The peak coloration stage, focused
in this study, is defined by synthesizing those two sources. At Harvard
Forest, the foliage peak coloration stage is defined when the percentage
of colored leaves reaches 60%–95%. It usually lasts about two weeks. At
Hubbard Brook Forest, the peak coloration stage is defined when the
phenological index value achieves 1–2 (i.e., most/all leaves becoming
yellow or red, with a few to half of fallen leaves). To assess the

capability of the pheno-network model in predicting the satellite-de-
rived peak foliage coloration dates, the surveyed field peak coloration
dates at Harvard Forest and Hubbard Brook Forest will be compared to
those estimated from the MODIS time series from 2002 to 2013.

2.2. MODIS data and pre-processing

Time series of MODIS Nadir Bidirectional reflectance distribution
function Adjusted Reflectance (NBAR) data (MCD43A4 H12V04, ver-
sion 6, with a spatial resolution of 500 m) from 2002 to 2013 were
acquired from Land Processes Distributed Active Archive Center (LP
DAAC). MCD43A4 utilizes a bidirectional reflectance distribution
function (BRDF) to model the reflectance under a nadir view, ac-
counting for view and solar geometries. It is a daily 16-day product, of
which surface reflectance at each date is determined based on a 16-day
retrieval period (including its eight preceding days and seven suc-
ceeding days). For each date, the reflectance value is estimated by
weighting all acquisitions from Terra and Aqua sensors during the re-
trieval period. The estimated reflectance value has the advantage of
reducing the influence of atmospheric interference and noise, and is
taken as the best representative value for each observation date. With
its daily optimized observation, MCD43A4 time series facilitates the
remotely sensed estimation of key phenological transition dates of ve-
getation. Each year, MCD43A4 reflectance data covering fall pheno-
phases (starting from the date when NDVI begins to decrease) were
used to estimate the phenological transition dates for fall foliage peak
coloration. Seven spectral bands (bands 1–7), ranging from visible to
shortwave infrared regions, were obtained. These spectral bands,
characteristic of leaf color, leaf cell structure, and leaf water content of
vegetation, were used to construct the pheno-network model.

Two quality assurance layers were employed to pre-process the time
series of MCD43A4 reflectance data. First, the MODIS BRDF/Albedo
Quality data (MCD43A2, version 6) provide a snow and ice quality
layer of the MCD43A4 reflectance data. It denotes if the MCD43A4
reflectance is retrieved on a snow-free or snow-covered surface.
MCD43A2 was used to flag the pixels that were contaminated by snow
for each observation date. Second, the MODIS land surface temperature
(LST) data (MOD11A1, version 6) provide a daytime surface skin
temperature layer to locate winter periods when snow cover could
appear. MOD11A1 records daytime LST on a daily basis at a spatial
resolution of 1000 m. It was spatially resampled to 500 m using a
nearest neighbor algorithm to match with that of the MCD43A4 re-
flectance data. The missing values of LST were temporally replaced by
the moving average of the nearest preceding and subsequent values.
These two quality control layers were considered together to distin-
guish the irregular outlying MCD43A4 reflectance in the time series.
Specifically, a pixel would be flagged as invalid at each observation
date if it was marked as a snow-covered one by MCD43A2, or if its
daytime LST was less than 5 °C (Zhang et al., 2006; Zhang and
Goldberg, 2011). Invalid reflectance observations were then replaced
by the moving average of the nearest preceding and succeeding good
quality neighbors in the MCD43A4 time series. Consequently, the pre-
processed MCD43A4 reflectance data smoothed out abrupt irregular
changes caused by snow and cloud contamination, and were more ro-
bust to outlying observations in the time series.

The MODIS Land Cover Type data (MCD12Q1, version 5.1) provide
annual global maps of land cover at 500 m spatial resolution in a variety
of classification schemes (e.g., International Geosphere Biosphere
Programme [IGBP] global vegetation classification scheme, University
of Maryland scheme, and MODIS-derived Net Primary Production
(NPP) scheme). IGBP global vegetation classification scheme is a pri-
mary land cover scheme that includes 17 land cover classes (i.e., 11
natural vegetation classes, 3 developed land classes, and 3 non-vege-
tation classes). It was adopted in this study to locate areas covered by
deciduous broadleaf forest (IGBP class label 4) and mixed forest (IGBP
class label 5). Fall phenology and foliage peak coloration are of

Table 1
Definition of phenological index of foliage coloration at Hubbard Brook Foresta.

Phenological index Description

4 Only scattered leaves or branches have changed color
3 Many leaves have noticeable reddening or yellowing color
2 Most leaves have become yellow or red, with a few fallen

leaves
1 No more green leaves on the canopy. Half of the leaves have

fallen
0.5 Most leaves have fallen
0 All leaves have fallen, except remnants on beech

a Adapted from routine seasonal phenology measurements at Hubbard Brook
Forest (http://hubbardbrook.org/data/dataset.php?id=51).
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particular interest and importance for these two land cover classes. The
quality control layer of the MCD12Q1 assesses the confidence level of
land cover classification, and only the pixels with the classification
confidence greater than 50% for all the years were kept in this study.
For those deciduous broadleaf and mixed forest areas within the extent
of the MODIS H12V04 tile, the spatial distributions of mean and stan-
dard deviation of fall foliage peak coloration dates throughout
2002–2013 would be mapped using the proposed model.

The MODIS Land Cover Dynamic data (MCD12Q2, version 5) pro-
vide annual global estimation maps of the timing of vegetation phe-
nology (e.g., vegetation growth, maturity, and senescence) at 500 m
spatial resolution. The seasonal phenological dynamics of vegetation
were estimated through a logistic function fitted to time series of
smoothed EVI (Ganguly et al., 2010; Zhang et al., 2003). The pheno-
logical measures of MCD12Q2 relevant to fall phenology include the
onset date of EVI decrease and the onset date of EVI minimum. These
phenological transition dates correspond to the timing of vegetation
senescence and dormancy, respectively. As a global vegetation pheno-
logical product, MCD12Q2 may be a good source for defining a tem-
poral constraint range for estimating the peak coloration dates, which
may further reduce the influence of outlying observations in the time
series. In this study, the role of this phenological constraint would be
evaluated on the estimation results of the pheno-network model.

2.3. Complex network-based time series remote sensing model

In this study, we developed an innovative complex network re-
presentation of satellite time series to estimate the fall foliage transition
date for peak coloration. Specifically, the complex network is con-
structed on a per-pixel basis with the spectral signatures acquired
during the fall phenology. The spectral signatures of a pixel taken on
each day are represented as nodes (i.e., spectral nodes) and the simi-
larities between the nodes are represented as edges (Section 2.3.1).
Based on this representation, we model the collective behavior of the
fall phenological progress through network measures (Section 2.3.2).

2.3.1. Innovative complex network representation of fall phenological
progress

The proposed model constructs an undirected network for each
pixel based on its spectral signatures acquired during the fall phenology
of a year (referred to as a pheno-network). Specifically, the spectral
signature of a pixel obtained on each day of the fall phenology is re-
presented as a spectral node. Those spectral nodes that share similar
spectral signatures are connected using edges. For a pair of nodes, the
similarity between their spectral signatures is measured using a cosine
distance function (Salton and McGill, 1986):

=A B cos A B
A B

D( , ) 1
(1)

where A and B are vectors representing spectral signatures of the pixel
obtained on two different days, and D(A,B) is the cosine distance be-
tween A and B. ‖A‖ and ‖B‖ are the norms of the vectors A and B,
respectively. The cosine distance is shorter between nodes with more
similar spectral signatures. The cosine similarity is selected in this
study, because it measures the similarity of orientation between the
vectors representing spectral signatures, and is invariant to the mag-
nitude difference. Therefore, the cosine similarity can help reduce the
influence of albedo and illumination effects.

The way to formulate the relationships between pairs of nodes ac-
cording to their spectral similarities determines the structure of a
pheno-network. In the pheno-network representation, edges between
spectral nodes with shorter cosine distance are more likely to be edges
between nearby dates, and thus provide more information about the
temporal dynamics of phenological changes. Based on this assumption,
we define a critical control parameter, called “tolerance value” (d0), to
retain edges with short cosine distance and filter out edges with long

cosine distance. When constructing the pheno-network representation
of the fall phenological process, only those pairs of nodes with a cosine
distance shorter than d0 are connected by edges. The structure of the
network differs with different tolerance values. A proper d0 value is
essential in constructing a pheno-network that could capture the re-
lationships between the nodes. On one hand, if d0 is too large, all nodes
in the network are connected, resulting in a fully connected network.
Such a network cannot differentiate the role of different nodes. On the
other hand, if d0 is too small, the resultant network may be too sparse to
be representative of the relationships between the nodes. To handle this
issue, a tolerance selection algorithm is devised and will be discussed in
Section 2.3.3 to help select proper d0 values. For the following discus-
sion, we assume an arbitrary d0 is used to construct the pheno-network.

2.3.2. Network measures of fall foliage peak coloration
Characterized by canopy pigment content, cell structure, and water

content, the spectral signature of forest canopy usually changes gra-
dually before and after the phenological transition period, but more
dramatically during the transition period in the fall. From a network
perspective, those nodes representing days before the transition period
share similar spectral signatures and tend to form a densely connected
group among themselves, the “pre-transition group”. Those nodes re-
presenting days after the transition period would show similar char-
acteristics and tend to form the “post-transition group”, but these two
groups would have different spectral signatures and appear to be apart
in the network. As the change of spectral signature during the fall
phenology is a continuous process, those nodes representing days
during the transition period would form the “transition group”, which
stands between the pre- and post-transition groups.

In the pheno-network, those nodes representing the late days in the
pre-transition group would share similar spectral signatures with those
nodes representing the early days in the transition group. Similarly,
those nodes representing the late days in the transition group would
share similar spectral signatures with those nodes representing the early
days in the post-transition group. Both the pre- and post-transition
groups are connected to the transition group, but the edges between
different groups are far fewer than the edges within each group. There
would be few direct edges between the pre- and post-transition groups,
but only the transition group serves as a bridge connecting both the pre-
and post-transition groups. The spectral signature of forest canopy
changes more dramatically during the transition period, compared to
that during the pre- and post-transition periods. Hence, the edges would
be most dense within the pre- and post-transition groups, and most
sparse within the transition group. Fig. 1 shows an example of a pheno-
network with three groups. Fig. 1 provides a visualization of a pheno-
network from a network view, using the force-directed graph-drawing
algorithm (Fruchterman and Reingold, 1991). The algorithm visualizes
a network in two-dimensional space by assigning spring forces among
its nodes based on their relative positions. The forces include attractive
forces between directly connected nodes and repulsive forces between
all nodes. The network is projected to the two-dimensional space by
simulating the motion of its nodes and edges using these forces. While
the axes in Fig. 1 bare no ecological meaning, the visualization of the
pheno-network illustrates the relationships between spectral nodes and
the changes of spectral signatures over time.

Based on these characteristics of the pheno-network, this study
devises an innovative bridging coefficient to identify nodes within the
transition group for estimating the critical phenological transition
period in the fall season. For a node i, its bridging coefficient, noted as
bci, is defined as the ratio of its betweenness centrality to clustering
coefficient:

=bc b
ci

i

i (2)

where bi and ci are the betweenness centrality and clustering coefficient
of node i, respectively. A pair of nodes in a network could be connected
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by either a direct edge or a chain of edges (referred to as “paths”). There
may be multiple paths between a pair of nodes, with each path con-
sisting of different number of edges. The path with the lowest number
of edges is called the shortest path between the node pair. The be-
tweenness centrality of node i is the fraction of all shortest paths be-
tween all pairs of nodes that pass through node i (Freeman, 1978):

=b i( )
i

s t i

st

st (3)

where σst is the total number of shortest paths between a pair of nodes s
and t, and σst(i) is the number of these paths that pass through node i.
The betweenness centrality represents the degree to which a node
stands between all other nodes. A node with a high betweenness cen-
trality value serves as a hub to connect other nodes together in the
network. A number of studies have used betweenness centrality to
identify critical nodes in various networks (Newman, 2010). For ex-
ample, nodes with the highest betweenness centrality value in a social
network are considered to be individuals who connect different social
groups. These individuals always receive the most attention in network-
based intervention strategies against infectious diseases (Gao et al.,
2016; Luo et al., 2018; Valente, 2012). As discussed above, all paths
connecting the pre- and post-transition groups have to go through the
transition group. Nodes in the transition group have the highest be-
tweenness centrality in the pheno-network.

Besides being the hub of the pheno-network, the transition group
has another important characteristic, i.e. edges are sparse within the
group. Therefore, we combine the betweenness centrality with another
network measure, clustering coefficient, to help identify the transition
nodes. The clustering coefficient of a node is given by the total number
of edges between its neighbors divided by the maximum number of
edges that could possibly exist between the neighbors (Watts and
Strogatz, 1998):

=c
e

k k
2 { }
( 1)i

jk

i i (4)

where nodes j and k are any two neighbors of node i and ejk is the edge
between these two nodes, and ki is the total number of neighbors of
node i. The clustering coefficient measures the degree to which neigh-
bors of a node cluster together. For a node with a low clustering coef-
ficient value, its neighbors are sparsely connected between themselves.
Given the structure of the pheno-network, nodes in the transition group
tend to have the highest betweenness centrality and relatively low
clustering coefficient, which results in the highest bridging coefficient.

The spectral signature of a pixel on each observation day is acquired
from the daily 16-day MODIS MCD43A4 product in this study. Despite
the spectral signature on each date being smoothed and optimized over
its 16-day retrieval period, the node-based representation of spectral
signatures via the pheno-network may be subject to the influence of
irregular (or outlying) spectral signatures. A node with irregular (or
outlying) spectral signature may yield a high bridging coefficient if its
spectral signature is similar to that of phenological transition dates. To
reduce the influence of irregular and outlying spectral signatures, a
seven-day moving average window is applied to this network re-
presentation to calculate the moving average of bridging coefficients for
each observation day. Specifically, for a given day, the moving average
is calculated as the average of the bridging coefficients for a seven day
moving retrieval period (including three preceding days and three
succeeding days). As there is no bona fide boundary of the transition
period, we focus on the identification of the most critical phenological
transition date, the date with the highest moving average bridging
coefficient. By adopting the moving average, the network-based phe-
nological model is expected to provide a more robust representation of
the fall phenological process.

2.3.3. Tolerance selection algorithm
As discussed in Section 2.3.1, different tolerance values d0 may yield

different pheno-networks. We devised a tolerance selection algorithm
to help select proper tolerance values. The algorithm starts by creating
candidate edges between all possible pairs of nodes. For each pair, the
candidate edge between the nodes is labelled by the cosine distance
between them. All candidate edges are sorted based on their associated
cosine distance. The tolerate selection algorithm will test a range of d0
values for constructing the pheno-networks. In this study, we chose the
5th, 10th, 15th, …, 95th percentiles of the cosine distance values as-
sociated with all candidate edges. For example, when d0 is set to the 5th
percentile, the 5% of candidate edges with the shortest cosine distance
are selected and added to the pheno-network. In the case that a small
value is chosen as the tolerance value, the resultant network may be
highly fragmented. To avoid this situation, an additional constraint on
the size of the “giant component” is designed.

Networks typically contain a number of connected components,
each consisting of a subset of nodes. Any two nodes within a connected
component can be connected through either a direct edge or a path
between them. In contrast, all connected components are disconnected
from each other, meaning that there is no edge or path connecting
nodes in different components. Among the connected components a
network may have, the one with the largest number of nodes is defined
as the giant component. The number of nodes in the giant component,
as a fraction of the total number of nodes in the network (S), is an
important measure for the cohesiveness of the network (Newman,
2010). In real world, functional components of a complex system are
mostly interrelated, and thus networks representing these systems
usually have high S values, mostly over 50% and sometimes over 90%
(Gao and Bian, 2016; Newman et al., 2011; Newman, 2010). For pheno-
networks, the change of the spectral signatures of a pixel throughout
the year is a continuous process. It is reasonable to assume that the
majority of the nodes in the pheno-network can be connected through
edges or paths, and the S value would be relatively high. Following this
principle, the tolerance selection algorithm will discard any d0 value
that will yield a network with an S value lower than 85%. This con-
straint ensures that the resulting pheno-network is cohesive with a large

Fig. 1. Pheno-network of fall phenological progress with three node groups.
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giant component. The required S value is not too high to allow the
algorithm certain tolerance to missing and outlying data.

For a tolerance value that satisfies the above constraint, the moving
average bridging coefficient will be calculated for all nodes, and the one
with the highest value will be identified. The algorithm then compares
all identified nodes among all pheno-networks and selects the node
with the highest moving average bridging coefficient as the critical
transition date. With adequate computing resources, this algorithm
could potentially be configured into an exhaustive search on all possible
d0 values and produces best predictions of the transition dates.

2.4. Accuracy assessment

The network-retrieved phenological transition dates would be
compared to field-based phenological measurements at Harvard Forest
and Hubbard Brook Forest from 2002 to 2013. To match the field
measurements with satellite pixels, the foliage coloration extents of
surveyed trees species at each forest were averaged to represent the
foliage status of the vegetation community. It is noted that the foliage
coloration at the community level may be more appropriately re-
presented using the areal average if the species abundance and cov-
erage are known (Liang et al., 2011). The field dataset at Harvard Forest
was mainly used for the accuracy assessment purpose, as it recorded the
detailed leaf development status of representative species in the vege-
tation community during the fall phenology. The dataset at Hubbard
Brook Forest covered a variety of watersheds and topography, and was
less accurately measured in the field. Thus it was only used to roughly
assess the phenological transition dates retrieved from the pheno-net-
work model.

Several network-based measures were assessed using the field ob-
servations. First, the phenological transition date detected through the
devised bridging coefficient was compared to that from the between-
ness centrality, in which the node with the maximum moving average
betweenness centrality was utilized to estimate the transition date. As
the bridging coefficient is built upon the betweenness centrality, and
the betweenness centrality evaluates the role of a node standing be-
tween all other nodes in a network, the comparison between these two
network measures would further our understanding of pheno-network
models in retrieving critical phenological transition dates. Second, the
network measures were assessed according to the size of moving
window. The structure of the devised pheno-network may be affected
by nodes of irregular spectral signatures. To investigate the influence of
those observations, a series of moving windows with sizes ranging from
one to seven days were designed to calculate the moving average
bridging coefficient and to estimate the corresponding phenological
transition dates. Third, the role of the phenological constraint, defined
through the MCD12Q2 product, on the network estimation results was
evaluated. MCD12Q2 records the onset dates of EVI decrease and EVI
minimum, indicative of the range of fall phenological process. This
phenological constraint assumes that the peak coloration transition
date lies between the onset of the leaf senescence stage and the onset of

the dormancy stage. With the phenological constraint, the node with
the highest moving average bridging coefficient within this temporal
range was captured to estimate the transition date. Fourth, the network-
based phenological estimation results for both the pixel of Harvard
Forest headquarters and the pixels within the 6 ∗ 6 window (about
1.5 km) of the headquarters were assessed. Due to the geo-location
uncertainty, the pixel of Harvard Forest headquarters at 500 m may not
match well with field survey geographical coverage area. The mean and
standard deviation of the estimated transition dates of its 6 ∗ 6 pixel
window were calculated.

Finally, the network-based measures were compared with the con-
ventional MODIS NDVI time series-based phenological measures. The
NDVI time series was constructed using the MCD43A4 data and
smoothed through following the MCD12Q2 protocol (Ganguly et al.,
2010). Double logistic function, as one of the most widely used phe-
nological curve fitting methods, was employed to further smooth the
NDVI time series in tracking the seasonal phenological patterns of ve-
getation. The phenological transition dates were estimated using a
variety of conventional phenophase detection methods, including the
threshold-based method, the curve derivative method, and the curva-
ture change rate method based on the fitted curve (White et al., 2009;
Zhang et al., 2003). The threshold-based method estimates the pheno-
logical transition dates through a user-defined threshold of seasonal
development of NDVI. A multitude of threshold values were experi-
mented in the study and the 50% of the amplitude of NDVI was selected
as the threshold to retrieve the peak coloration dates. The curve deri-
vative method calculates the local extremes in the first derivative of the
fitted curve for phenological estimations. The curvature change rate
method captures the transition dates by calculating the local extremes
in the rate of curvature change of the fitted curve. The correlation
coefficient (R) and mean absolute difference (MAD) were utilized to
evaluate the performance of these phenological methods. The com-
parison between the pheno-network model and conventional phenolo-
gical measures would provide insight into the role of network science in
modeling the remotely sensed phenological process.

3. Results

3.1. Pheno-network of fall phenological process

The rationale for modeling the fall phenological process through
pheno-networks is that the structure of relationships between spectral
nodes can infer the phenological transition dates. As the tolerance value
determines how the spectral nodes are connected to each other and the
subsequent network structure, selecting an appropriate tolerance value
is critical. In this study, the role of the tolerance value was demon-
strated using the MODIS pixel that covers the Harvard Forest field site
(Fig. 2). For this MODIS pixel, its spectral signatures acquired from day
of year (DOY) 180 to 365 of year 2010 were represented as nodes in the
network. Three tolerance values were considered, including the 10th,
40th, and 70th percentiles of the cosine distance values among all

Fig. 2. Pheno-networks constructed with different tolerance values.
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candidate edges (as discussed in Section 2.3.3). For instance, the tol-
erance value of the 10th percentile of the cosine distance values denotes
that the 10% of candidate edges with the shortest cosine distance are
utilized to construct the pheno-network. For the low tolerance value,
nodes formed a number of small connected components, including
isolated singletons (components with one node). The resultant network
structure was too fragmented to infer the phenological process (Fig. 2a).
As more edges were added to the network with the increasing tolerance
value, the connected components (including singletons) began to merge
with each other. The giant component, whose size became significantly
larger than that of the others, began to appear. Yet when the tolerance
value was too high, almost all the nodes in the network were connected
to each other. This dense network structure made it difficult to differ-
entiate the roles of spectral nodes in the network (Fig. 2c). With the
tolerance selection algorithm, the formulated pheno-network that could
best represent the fall phenology was shown in Fig. 2b. Three node
groups could be roughly identified, with the transition group serving as
the hub linking other two groups together.

Several network measures were calculated based upon the for-
mulated network to uncover the underlying phenological process, in-
cluding betweenness centrality, clustering coefficient, and bridging
coefficient. As an example, those network measures of the pixel of
Harvard Forest headquarters for the year of 2010 were shown in Fig. 3.
Ranging from DOY 180 to 365, the nodes with the high betweenness
centrality values were located within the temporal period of DOY 290
to 300. It indicated that the spectral signatures within this range played
a central role in connecting all the spectral signatures in the fall season,
and had significant controls on the spectral dynamic changes transi-
tioning from one period to another. The clustering coefficient, as a local
measure, quantified the degree to which neighbors of a node clustered
together. Due to the drastic change of spectral signatures during the
transition period, only transition nodes in nearby dates shared spectral
similarity. This was represented as the sparse edges between the tran-
sition nodes and their neighbors.

The identified nodes with high bridging coefficient values were si-
milar to those with high betweenness centrality values. Yet relative
rankings of these nodes via those two measures slightly differed, as the
bridging coefficient also accounted for the extent of neighborhood
connections of a node. The grey-shaded region (DOY 282 to 298) de-
noted the field-observed peak coloration period at Harvard Forest when
the mean percent of colored leaves achieved 60% to 95% in 2010. All
the high betweenness centrality and bridging coefficient values lay

within this temporal period, indicating that the spectral signatures
during the peak coloration period served as the transition nodes in the
constructed pheno-network.

3.2. Field evaluation of fall foliage coloration

Field observations of fall phenology at Harvard Forest were typi-
cally conducted from DOY 240 to 330. The leaf foliage of tree species
started to change color in early September, achieved the half of max-
imum coloration around early October, and continued to full coloration
around mid-November. The mean and standard deviation of the per-
centage of colored leaves of 57 sampling trees along the fall phenolo-
gical trajectory were shown in Fig. 4. The mean percentage of colored
leaves generally followed a logistic curve for the mapping years, with a
gradual change at the beginning and end of the coloration process and a
more drastic change in the middle. During the fall phenological process,
phenological variation in foliage coloration existed both within and
between tree species in the community. The standard deviation of the
colored leaf percentage was relatively low (below 10%) in early Sep-
tember and mid-November, and then increased to about 30% around
mid-October due to a wider leaf coloration extent of tree species. This
large variation indicated that some tree species changed color con-
siderably while other species might still maintain green color. The
timing to achieve a certain percentage of colored leaves also varied
across individual trees. For instance, the timing that an individual tree
attained 70% of leaf coloration spanned from DOY 268 to 301 in 2004.
For some species, this might differ slightly from DOY 283 to 289 (e.g.,
A. pensylvanicum), while other species might have a larger variation
ranging from DOY 268 to 288 (e.g., Fraxinus americana). The average
timing of 70% of leaf coloration differed inter-annually at Harvard
Forest, with the standard deviation of the timing across years being
3.4 days. Similarly, the timing of leaf coloration extent varied across
trees at Hubbard Brook Forest. The standard deviation of the timing
corresponding to the phenological index 2 across years was 3.13 days.

3.3. Network measures of fall phenological transition dates

For the constructed pheno-networks of the pixel of Harvard Forest
headquarters, the bridging coefficient and betweenness centrality va-
lues of each observation date from 2002 to 2013 were shown in Fig. 5.
The grey-shaded regions in the figure denoted the field-observed peak
coloration period (about two weeks). Almost all the maximum bridging

Fig. 3. Network measures of the fall phenology of the pixel of Harvard Forest headquarters in 2010.
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coefficient and betweenness centrality values were located within the
grey-shaded peak coloration regions, which indicated the central role of
spectral signatures in this region in connecting all the spectral nodes
within the network.

The measures of bridging coefficient and betweenness centrality
were compared in Fig. 5. Comparable betweenness centrality values
might exist on multiple observation dates along the fall phenological
trajectory. For example, the betweenness centrality values on DOY 276
and 292 were close in 2008, and so were the betweenness centrality
values on DOY 292 and 315 in 2011. The betweenness centrality
measure was able to identify the spectral signatures that had more

controls in linking the spectral information within the network, but
might not be sufficiently appropriate to capture the transition nodes
connecting one phenological stage with another. Of those dates with
comparable betweenness centrality values, the ones with higher brid-
ging coefficient values were more inclined to lie within the grey re-
gions. As an integrated measure of betweenness centrality and clus-
tering coefficient, the bridging coefficient weighted the connection
effects of neighboring nodes to facilitate the identification of nodes
serving as the transition hub between different phenological stages. The
patterns of spectral nodes during the fall phenological process and the
structure of the corresponding network could be captured. Almost all

Fig. 4. The mean and standard deviation of the percentage of colored leaves at Harvard Forest.

Fig. 5. The bridging coefficient and betweenness centrality values of each observation date from 2002 to 2013 for the pixel of Harvard Forest headquarters.
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the phenological transition dates, estimated through the maximum
bridging coefficient, lay within the field-observed peak coloration
periods at Harvard Forest from 2002 to 2013. Despite the importance of
betweenness centrality in evaluating the role of a node standing be-
tween all other nodes, the comparison between these two network
measures indicated that bridging coefficient may be more appropriate
in retrieving critical phenological transition dates and modeling the fall
phenological process.

Despite the good performance of bridging coefficient in estimating
the phenological transition dates, this node-based measure might be
subject to the influence of irregular spectral signatures. As the pheno-
network was constructed according to the spectral similarities between
the nodes, an irregular signature similar to those during the transition
dates might attain an abrupt high bridging coefficient value in com-
parison to that of its neighboring observation dates. To reduce the in-
fluence of those irregular spectral signatures, both bridging coefficient
and betweenness centrality were averaged within a temporal moving
window. A series of moving window sizes, ranging from one to seven,
were experimented in the study to calculate the moving average brid-
ging coefficient and moving average betweenness centrality.

Of a variety of moving window sizes, the seven-day moving average
was found to be the best tradeoff among the spectral representation of
nodes, spectral smoothness, and duration of in-situ foliage peak-col-
oration period. Compared to single day network measures, the resulting
seven-day moving average bridging coefficient and betweenness cen-
trality had much smoother and clearer temporal patterns during the fall
phenology (Fig. 6). The phenological transition dates were much easier
to be estimated via maximum moving average network measures. Be-
tween these two network measures, the moving average bridging
coefficient had more distinct values than the moving average be-
tweenness centrality values among the observation dates. It could more
accurately identify the transition nodes within the network, similar to
the single date network measure comparisons. Almost all the pheno-
logical transition dates, estimated through moving average bridging
coefficients, lay within the grey-shaded field peak coloration regions.

The field observations at Hubbard Brook Forest were also utilized to
evaluate the network-based phenological estimations. As the phenolo-
gical surveys were conducted for three dominant species and field sites
were located in the areas of varying topography and watersheds, the
average phenological index of corresponding MODIS pixels was roughly
employed to assess the community-level leaf coloration extent.
Specifically, the phenological transition dates of the MODIS pixels
covering the sites were estimated through the network model, and the
ground-based phenological measures corresponding to estimated tran-
sition dates were averaged as the mean network-detected phenological
index results (Fig. 7). The majority of average phenological index re-
sults were close to or below level 2 during 2002–2013, indicating that
most leaves changed to intense reddish or yellow color at the estimated
phenological transition dates. This field-based evaluation, along with
the Harvard Forest assessment results, implied that the phenological
transition dates estimated through the network model aligned well with
the foliage peak coloration period, a critical phenophase to understand
vegetation phenological responses to climate and environmental
changes. As the field measurements at Hubbard Brook Forest were re-
latively rough (e.g., three species in ordinal scales), the further as-
sessment of network-based measures was mainly conducted using the
field data at Harvard Forest.

Fig. 6. The moving average bridging coefficient and betweenness centrality values of each observation date from 2002 to 2013 for the pixel of Harvard Forest
headquarters.

Fig. 7. The mean network-detected phenological index results from 2002 to
2013 at Hubbard Brook Forest.
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The impact of the phenological constraint, defined through the
MCD12Q2 product, on the network estimation results was evaluated at
Harvard Forest. By leveraging the devised network model, the moving
average bridging coefficient values were calculated both with and
without phenological constraints (Table 2). The phenological transition
dates estimated under these two scenarios were almost identical, lying
within or close to in-situ two week peak coloration periods. It suggested
that the network model devised in this study was not affected much by
the varying number of nodes, caused by the change of the temporal
phenological range.

Due to the geolocation uncertainties of the MODIS pixel and sur-
veyed tree species (within 1.5 km of the Harvard Forest headquarters),
the phenological transition dates were also estimated for all the pixels
in the 6*6 window of the Harvard Forest headquarters. The mean and
standard deviation of the estimated transition dates were in Table 2.
The mean phenological transition dates for this 6*6 pixel window
aligned better with field mean peak coloration periods than that esti-
mated from the pixel of Harvard Forest headquarters, particularly for
years 2006 and 2008. The mean phenological estimation results of the
6*6 pixel window were also comparable with and without phenological
constraints, though the network with phenological constraints might
help reduce the standard deviation caused by irregular spectral ob-
servations. The results indicated that the devised network structure is
characteristic of the complex fall phenological process, particularly to
predict the transition hub in connecting all nodes of different stages
together.

Conventionally, the remotely sensed phenological transition dates
were estimated through time series of vegetation index over the course
of a year. Specifically, double logistic function was employed in this
study to fit the time series of NDVI data at Harvard Forest and Hubbard
Brook Forest. The phenological transition dates were extracted using
three phenophase extraction methods, namely the threshold-based
method, the curve derivative method, and the curvature change rate
method. At Harvard Forest, those satellite-derived mean phenological
estimates (6 ∗ 6 pixel window with phenological constraints) were
compared to the mean dates of 75% ground leaf coloration using cor-
relation coefficient and MAD (Fig. 8). Among the proposed network
model and conventional phenophase extraction methods, the network
model achieved the highest accuracy in estimating foliage peak col-
oration dates, with the highest correlation coefficient (0.68) and the
lowest MAD (3.68 days) values. The correlation coefficient and MAD
values of the threshold-based method were 0.6 and 6.33 days, respec-
tively. For the curve derivative method, the correlation coefficient was
0.52 and the MAD was 8.5 days. As regards the curvature change rate
method, the correlation coefficient and MAD values were 0.42 and

19.5 days, respectively. By comparison, the network measures aligned
better with field observed peak coloration periods. The inter-annual
variation in foliage peak coloration was more appropriately explained
by the network model with a correlation coefficient of 0.68. The mean
difference between network-retrieved and field-observed phenological
measures was smaller than the time interval of field observations
(7 days). The transition dates estimated by threshold-based and curve
derivative methods tended to be earlier than the field peak coloration
dates, with most satellite-field pairs distributed below the 1:1 line in
Fig. 8. On the contrary, the transition dates extracted by the curvature
change rate method were much later than the field peak coloration
dates, with a mean difference of about 20 days. The comparison be-
tween those phenological measures indicated that this network re-
presentation could uncover fall foliage peak coloration characteristics,
complementary to the conventional NDVI measures.

Table 2
The phenological transition dates estimated for the pixel of Harvard Forest headquarters and its 6 ∗ 6 pixel window, with and without phenological constraints via
moving average bridging coefficients.

Year Field-based mean peak
coloration period

Phenological transition dates estimated via pheno-network (moving average bridging coefficient)

Phenological constraint No phenological constraint

The pixel of Harvard Forest
headquarters

6 ∗ 6 pixel window
(mean ± standard deviation)

The pixel of Harvard
Forest headquarters

6 ∗ 6 pixel window
(mean ± standard deviation)

2002 [289, 307] 303 292 ± 6 303 292 ± 8
2003 [284, 300] 296 290 ± 7 296 290 ± 8
2004 [285, 300] 296 290 ± 4 296 294 ± 6
2005 [288, 305] 294 292 ± 7 294 296 ± 16
2006 [278, 294] 297 284 ± 6 298 286 ± 8
2007 [288, 299] 286 288 ± 3 286 287 ± 5
2008 [283, 298] 275 283 ± 2 275 281 ± 4
2009 [280, 298] 283 285 ± 3 283 285 ± 4
2010 [282, 298] 294 292 ± 5 294 292 ± 7
2011 [284, 304] 290 294 ± 6 290 296 ± 8
2012 [280, 295] 282 285 ± 6 282 282 ± 7
2013 [280, 294] 290 289 ± 5 290 289 ± 8

Fig. 8. The comparisons of the network model and three conventional NDVI
curve-fitting based phenophase extraction methods (i.e., threshold-based, curve
derivative, and curvature change rate) in estimating mean phenological tran-
sition dates, using mean dates of 75% ground leaf coloration during 2002 to
2013 at Harvard Forest.
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At Hubbard Brook Forest, those satellite-derived phenological esti-
mates were compared and evaluated according to their corresponding
mean field-level phenological indices (Fig. 9). During 2002–2013, the
mean field-level phenological indices retrieved by the network model
were mostly close to index 2, indicating that the mean network-based
estimates lay within the peak coloration period in which most leaves
changed to intense reddish or yellow color. The mean phenological
indices estimated by the curve derivative and threshold-based methods
were mostly between index 3 and 4, implying that the retrieved phe-
nological dates tended to be within low- to moderate- foliage coloration
periods. By contrast, the mean phenological indices derived by the
curvature change rate method were mostly below index 1, suggesting
that the estimated dates were during the post-peak coloration period
with most leaves fallen. The retrieved phenological periods from those
four methods at Hubbard Brook Forest were comparable to those esti-
mated at Harvard Forest. The comparisons among the methods in Fig. 8
and Fig. 9 indicated that the spatial and inter-annual variations in fo-
liage peak coloration could be more appropriately explained by the
network model.

With the devised network model, the phenological transition dates
for peak coloration were estimated for the deciduous broadleaf and
mixed forest areas within the extent of MODIS H12V04 tile. The spatial
distributions of mean and standard deviation of network-retrieved peak
coloration dates from 2002 to 2013 were shown in Fig. 10. The esti-
mated mean peak coloration dates were around mid-October (DOY
290) in the southern area, and shifted to earlier dates around the end of
September (DOY 270) in the north. They exhibited a mean change of
2.3 days per latitude degree. The network detected results revealed a
gradual phenological shift from north to south along the latitudinal
gradient, following the Hopkins bioclimatic law (Hopkins, 1938). It
suggested that temperature decreased with increasing latitude and
would likely be an important force driving the foliage phenological
variations over wide geographic regions, though a variety of abiotic and
biotic factors (e.g., elevation, local climate, and species interactions)
might contribute to local variations in foliage phenological status

(Schwartz and Reiter, 2000; Zhang and Goldberg, 2011). Along the
latitudinal gradient, the inter-annual variation in the estimated average
timing of peak coloration (the standard deviation map in Fig. 10) was
generally less than 10 days across 2002–2013, which was comparable
to the inter-annual variations in field observations of validation sites. A
more comprehensive phenological spatial pattern analysis in response
to climatic and environmental factors was out of scope of this study,
due to the uncertainties in MODIS IGBP land cover classification results,
snow and temperature quality flags, cloud and atmospheric inter-
ferences, and NBAR spectral data. The understanding of complex phe-
nological patterns would benefit from future investigations of the pro-
posed network model across a wide variety of ecosystems and regions,
including low illumination conditions at high latitude regions.

4. Discussion

This study is the first attempt at introducing network science to time
series remote sensing in modeling the complex phenological process of
vegetation. The structures of pheno-networks characterize the collec-
tive changes of vegetation spectral signatures along the phenological
trajectory. The overall performance of the pheno-network model, along
with its opportunities and limitations, is discussed below.

Over the last decade, complex networks have been increasingly
utilized in a wide variety of disciplinary fields, ranging from social to
physical sciences, to capture the fundamental patterns and structures of
complex systems. In this study, the formulation of network structures
through spectral similarity measures presents a new representation of
the complex phenological process of vegetation. This representation
characterizes the vegetation phenological status through tracking the
continuing changes of vegetation spectral signatures along the temporal
trajectory. It models the fall phenology of deciduous forests to estimate
the critical phenological transition dates using betweenness centrality,
clustering coefficient, and bridging coefficient measures. With Harvard
Forest and Hubbard Brook Forest as the reference sites, the network-
retrieved phenological transition dates were found to align well with
the peak coloration periods of the field observations. This indicates that
the spectral signatures at the peak coloration period serve as a con-
necting hub and play a significant role in linking all the spectral sig-
natures during the fall phenological process. The network measures can
differentiate the various roles of vegetation spectral signatures on ob-
servation dates. Compared to betweenness centrality, the bridging
coefficient network measure can better identify the transition nodes
connecting different phenological stages through weighting the clus-
tering coefficient. The peak coloration period of deciduous forests
usually lasts about two weeks, and cannot be adequately captured by
conventional curve fitting-based phenological approaches. The devised
model extracts this critical phenological characteristic by modeling the
collective change of spectral signatures with the network representa-
tion, complementary to current phenological models.

The conventional phenological models are typically based on curve
fitting. The basic assumption is that the phenological trajectory of

Fig. 9. The mean field-level phenological index retrieved from the network
model and three conventional NDVI curve-fitting based phenophase extraction
methods (i.e., threshold-based, curve derivative, and curvature change rate)
during 2002 to 2013 at Hubbard Brook Forest.

Fig. 10. The spatial distributions of mean (left) and standard deviation (right) of estimated peak coloration dates from 2002 to 2013 for the deciduous broadleaf and
mixed forest areas in the MODIS H12V04 tile using the pheno-network model.
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vegetation can be modeled via specific forms of mathematical equations
(e.g., double logistic functions, asymmetric Gaussian functions, and
Fourier transform). They fit a smoothing curve to raw observations of
vegetation index throughout the year, and extracts the critical pheno-
logical stages of vegetation through characterizing the change of the
curve. Yet the curve fitting-based approaches do not exploit all avail-
able spectral information and assume key phenological information can
be captured through the mathematical equations for the curve. The
phenological stages characterized by different equations may vary
considerably, yielding conflicting results in uncovering vegetation re-
sponses to climate and environmental changes. Further, phenological
observations over the course of a year are typically required in the
curve fitting-based approaches. In this study, the proposed network
model does not limit the complex phenological process to specific
mathematical equations. This non-parametric model represents the
complex system through defining phenology-relevant spectral nodes
and edges, and analyzes the structure of collections of spectral nodes
along the phenological trajectory with network measures. It extends
one-dimensional vegetation index-based analysis to multiple-dimen-
sional spectral analysis (Diao and Wang, 2016a, 2016b). The flexibility
in constructing network models enables the characterization of critical
phenological transition dates without requiring the year-long informa-
tion. This network-based phenological model opens up unique oppor-
tunities to understand phenological dynamics of complex terrestrial
ecosystems within certain temporal growth windows, or the ecosystems
in which phenological processes are challenging to be defined via
specific mathematical forms.

Remotely sensed phenological monitoring has mainly been con-
ducted by tracking the temporal dynamics of vegetation index (e.g.,
NDVI, EVI, NDWI, and excess green index). Despite the promising re-
sults of those studies, the phenological transition dates extracted via
different vegetation indices may vary considerably. Vegetation phe-
nology is characterized by a collective combination of vegetation
properties. As different vegetation indices have emphases on different
vegetation properties, selecting an appropriate vegetation index to
characterize the phenological process is difficult. The pheno-network
model devised in this study offers a new angle for phenological char-
acterization. It utilizes cosine distance to measure the similarities be-
tween spectral signatures along the vegetation development trajectory.
Spectral signatures within a phenological stage are inclined to be more
similar compared to those from different stages. A number of networks
can be constructed with varying levels of spectral similarities. The
underlying structure of the network depends on the way in which the
spectral signatures are interconnected. As a sparsely or densely con-
nected network may not adequately capture gradual changes of vege-
tation spectral signatures over time, the tolerance value is employed to
locate a cohesive yet representative network that portrays phenological
transition processes. The tolerance value controls the level of con-
nectivity between spectral nodes in the network, and hence identifying
an appropriate tolerance value is crucial in representing the phenolo-
gical process. As the first attempt in bridging network science with time
series remote sensing, the pheno-network model shows great potential
in estimating the phenological transition dates for peak coloration. Yet
the formulation of edges connecting the spectral nodes via the tolerance
value is not as straightforward as that of complex networks in other
disciplines (e.g., social networks). The capability of complex networks
in tracking the collective dynamics of vegetation properties along the
phenological trajectory, particularly the ways to define spectral nodes
and principles for connecting those nodes, need to be further explored
in future studies.

Due to the influence of cloud, snow, and atmospheric interferences,
outlying observations in the time series may gravely affect the pheno-
logical retrieving results from satellites. The conventional curve fitting-
based phenological approaches fit smoothing curves to raw observa-
tions of vegetation index to reduce the outlying effects. Similarly, sev-
eral efforts have been made in the pheno-network to diminish the

influence of outliers. First, the MCD43A4 product used in the study is a
NBAR daily 16-day product, which pinpoints the best representative
reflectance value for each observation date on a 16-day retrieval period.
Second, the ancillary quality assurance layers, including snow and land
surface temperature layers, are utilized to filter out the spectral ob-
servations that are contaminated by snow or low daytime temperature.
Third, the formulation of the pheno-network in connecting the spectral
nodes is built on spectral similarities. The outlying observations, which
typically maintain distinct spectral values from those of other dates,
will not be connected to other nodes in the network. Those separate
nodes will not be considered in calculating the network measures (e.g.,
bridging coefficient). Fourth, the moving average of network measures
is calculated for each observation date with a seven day temporal
window. This moving average measure accommodates the temporal
sequence of spectral nodes. It reduces the influence of irregular and
outlying spectral signatures and locates the transition period that has
consistently high bridging coefficient values. Fifth, the phenological
constraint, defined by onset dates of EVI decrease and EVI minimum, is
employed to constrain the analysis to the desired phenological periods
to mask out irrelevant temporal observation periods. The pheno-net-
work constructed in this study is unweighted and undirected, with the
temporal sequence of spectral observations accommodated via the
moving average measures. Other types of networks (e.g., directed or
weighted networks), which are out of scope of this study, may also be
good candidates for representing the complex phenological processes.

The accuracy of phenological transition dates retrieved by the net-
work model was affected by several factors. The network model was
constructed using the daily MODIS NBAR data generated from 16-day
observations. The temporal compositing process, imperfect atmospheric
corrections, and presence of snow and cloud cover may bring some
uncertainties to the phenological detection results. Besides, the missing
data during the fall phenological process may also affect the modeling
results. For example, about 27% of the land surface was contaminated
by clouds in 2001 to prevent acquisition of NBAR data for at least one
16-day period (Zhang et al., 2006). The extent of missing data varies
geographically and depends on the cloud cover distribution. Though
those missing data were replaced by the moving average of the nearest
preceding and succeeding good quality neighbors in the time series, the
temporal interpolation may cause some uncertainties and the detection
confidence for each pixel should be evaluated in future studies. Com-
plementary to MODIS, the recently launched Visible Infrared Imager
Radiometer Suite (VIIRS) and Geostationary Operational Environ-
mental Satellites (GOES) also observe the earth surface with high
temporal resolutions. The synthesis of those data sources can provide
daily spectral observations that are less affected by cloud contamina-
tions to further improve the phenological detection results.

Validating the remotely sensed phenology through ground ob-
servations is one of the most significant challenges in phenological
studies. Evaluation of estimated phenological transition dates using
field observations at Harvard Forest and Hubbard Brook Forest in-
dicates that the pheno-network model can capture well the foliage peak
coloration phase. To sufficiently validate the performance of the net-
work model on retrieving the vegetation phenology, more ground
phenological observations across ecosystems and species are needed in
future studies. Long term ground-based phenological observations are
still rare in the US. The recent initiatives in obtaining ground or near
surface remote sensing based phenological data, such as PhenoCam
Network (https://phenocam.sr.unh.edu/webcam/) and National
Phenological Network (https://www.usanpn.org/), will increase the
data repository for conducting the validation. However, reconciling
remotely sensed derived phenology with in-situ measurements is chal-
lenging, due to the lack of field data accounting for species abundance
or spatial heterogeneity within the vegetation community.

The field phenological observations are collected for representative
species in both validation sites (e.g., three tree species in Hubbard
Brook Forest). Yet the MODIS-retrieved phenology represents the

C. Diao Remote Sensing of Environment 229 (2019) 179–192

190

https://phenocam.sr.unh.edu/webcam/
https://www.usanpn.org/


overall phenological development of the vegetation community within
a pixel, which may not correspond to that of individual species within
the pixel. To be compatible with remotely sensed phenological mon-
itoring, more accurate community-level in-situ phenological measures
could be achieved through weighting the species-specific phenological
status by species abundance (or cover). Due to the limited species dis-
tribution data and geo-location uncertainties in the current sites, the
average percentages of leaf coloration of dominant tree species were
calculated for both sites to assess the average phenological estimates of
corresponding MODIS pixels. Further examination of the promising
results achieved by the network model would benefit from more in-situ
measurements collected at spatial scales commensurate with MODIS-
retrieved community-level phenology. More comprehensive validation
will be possible in future through upscaling the intensive field species-
specific phenological observations to landscape or vegetation commu-
nity scales, and through tracking the continuous vegetation growth
with near surface remote sensing techniques (e.g., webcams and un-
manned aerial vehicle).

5. Conclusions

This study aims to develop a pheno-network model to retrieve the
phenological transition dates of vegetation during the fall season. The
pheno-network model characterizes the phenological process through
tracking the spectral signature changes over time. It identifies the
spectral signatures during the transition period as the connecting hub in
linking all other spectral nodes in the network. This unique network
structure formulated via spectral similarities differentiates the various
roles of spectral nodes at different phenological stages. It is one of the
few studies to model the remotely sensed phenological process in a non-
parametric fashion, complementary to conventional curve fitting-based
phenological approaches. Our findings demonstrate that the phenolo-
gical transition dates estimated through the pheno-network model
correspond well with the peak coloration period of deciduous forests,
with Harvard Forest and Hubbard Brook Forest as the reference sites.
More efforts are needed in the future to evaluate this model over a
broader range of ecosystems and conditions. Vegetation phenology has
been documented to affect a wide range of ecosystem properties, in-
cluding plant species competition, surface albedo, gross primary pro-
ductivity, and ecosystem carbon uptake. To date, there is still a lack of
consensus on the relationships between environmental factors (e.g.,
temperature) and the timing of leaf senescence, which is an indicator of
the sophisticated mechanisms driving the fall phenological process. The
devised pheno-network presents a unique representation to estimate
critical phenological transition dates. This can subsequently improve
the understanding of underlying phenological theories and mechan-
isms, and facilitate more accurate phenological representations in ve-
getation-climate interaction models to infer vegetation responses to
climate change.
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