
ISPRS Journal of Photogrammetry and Remote Sensing 193 (2022) 77–89

Available online 15 September 2022
0924-2716/© 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Developing a sub-meter phenological spectral feature for mapping poplars 
and willows in urban environment 

Xiangcai Li a, Jinyan Tian a,*, Xiaojuan Li a, Le Wang b, Huili Gong a, Chen Shi a, Sheng Nie c, 
Lin Zhu a, Beibei Chen a, Yun Pan a, Jijun He a, Rongguang Ni d, Chunyuan Diao e,* 

a Beijing Laboratory of Water Resources Security, Capital Normal University, Beijing, China 
b Department of Geography, The State University of New York at Buffalo, Buffalo, NY, USA 
c Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China 
d State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, 
Beijing, China 
e Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, IL, USA   

A R T I C L E  I N F O   

Keywords: 
Urban 
Tree species classification 
Phenology 
Sub-meter 
Multi-scale 
Deep learning 

A B S T R A C T   

Poplar and willow catkins (PWCs) have caused severe impacts on human health and environmental quality, and 
accurate poplars and willows (PaWs) mapping with remote sensing is essential to monitor and manage the PWCs. 
However, two major issues have constrained the urban tree species (e.g. PaWs) identification: (1) the urban tree 
landscapes are highly fragmented and susceptible to the existence of mixed pixels in the remote sensing imagery; 
(2) the tree species in urban environment are diverse with high spectral similarity. To this end, this study 
developed a sub-meter phenological spectral feature (Spsf) with multi-scale and multi-temporal remote sensing 
imagery for monitoring PaWs at the tree species level. 

Spsf includes three steps: (1) exploring three key phenological periods of PaWs (leafless period, greenleaf 
period, and senescence period); (2) selecting one or three spectral indexes to characterize each phenological 
period; (3) stacking the spectral vegetation indexes from Sentinel-2 SR imagery and freely available sub-meter 
(0.8 m) Google Earth imagery together. Subsequently, Spsf was taken as the input data to train the deep 
learning DeepLabv3 + model for predicting the PaWs distribution. The Beijing Plain was chosen as the study 
area, where the distribution of PaWs was extensive and fragmented. Compared with the field survey reference 
data, the derived PaWs map achieved the overall accuracy higher than 92 % and the Kappa coefficient of 0.83. 
The Spsf integrated rich spatial information from sub-meter imagery and phenological spectral information from 
Sentinel-2 imagery, which may alleviate the impacts of mixed pixels and enhance the spectral separability be-
tween PaWs and other tree species effectively. The proposed Spsf-based method provides a new paradigm for 
sub-meter tree species mapping with multi-source free remote sensing data. The PaWs map can serve as reference 
data for the relevant departments to monitor and manage the PWCs.   

1. Introduction 

Poplars and willows (PaWs), belonging to the Salicaceae family, are 
widely planted in many countries because of the benefits of alleviating 
climate change, preventing soil erosion, rehabilitating degraded land, 
and sequestering carbon (Felix et al., 2008; Gordon, 2001; Isebrands and 
Richardson, 2014; Pulford and Watson, 2003). But there are still some 
negative impacts of planting PaWs, among which is the potential 

environmental and health issue caused by the poplars and willows cat-
kins (PWCs). PWCs are the seed hairs attached to the seeds after the 
capsules of the female plants of poplar and willow trees become mature 
(Li et al., 2016). The appearance of PWCs may pose significant threats to 
human health and environmental quality because it can cause allergic 
reactions, respiratory diseases, and environmental pollution (Wan et al., 
2020). Given the circumstances aforementioned, it is necessarily 
important to monitor the distribution of PaWs for effective management 
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of PWCs. 
The traditional field surveys are time and labor-intensive, economi-

cally expensive, and difficult to implement, especially on a regional 
scale to carry out tree species monitoring (Kulawardhana et al., 2014; 
Rana et al., 2016). On the contrary, remote sensing performs more 
efficiently in long-term regional and global tree species mapping (Jia 
et al., 2016; Moreau et al., 2003; Rana et al., 2016). According to the 
spatial resolution, the optical data applied to tree species detection can 
be divided into three categories: medium–high resolution data (e.g., 
Sentinel), high-resolution data (e.g., SPOT 5–7), and very high- 
resolution (VHR) data (e.g., unmanned aerial vehicle, WorldView). 
The medium–high resolution data has been applied in PaWs mapping in 
forest areas (Hamrouni et al., 2021; Tonbul et al., 2020), but obstacle 
exists when such type of data are utilized in urban areas: the complex 
composition of urban trees in highly fragmented urban environment is 
subject to the issue of the mixed pixels, which may lead to poor mapping 
accuracy. The high-resolution and VHR data have provided opportu-
nities for accurate mapping of tree species (Korznikov et al., 2021; 
Noonan and Chafer, 2007), yet almost all those types of data are typi-
cally economically expensive and usually confined to limited spatial 
extents and temporal coverage, making the large-scale mapping of PaWs 
difficult (Berni et al., 2009; Fassnacht et al., 2016; Tian et al., 2017). 

Fortunately, the VHR remote sensing imagery freely available from 
Google Earth (GE) provides a new idea for fragmented PaWs mapping. 
The global historical images at a sub-meter resolution can be acquired 
by the GE platform openly (Geng et al., 2020; Hu et al., 2013), which 
may break the barriers in tree species mapping at large scales due to the 
acquisition cost of typical commercial high-resolution and VHR imagery 
becoming prohibitively expensive. Additionally, the GE imagery con-
tains fine-grained spatial details such as shape, texture, and context, 
which are particularly critical for urban landscapes (Mura et al., 2008). 
Recently, several studies have attempted to leverage GE imagery for tree 
species detection (Dong et al., 2019; Fang et al., 2020). For instance, 
Guirado et al. (2017) utilized the GE images to perform accurate Ziziphus 
lotus mapping based on the ResNet classifier, a transferable Convolu-
tional Neural Network (CNN) model, and achieved the F1 score of 96.50 
%. Nonetheless, the application of GE imagery in tree species mapping is 
still constrained, particularly due to the limited spectral information. 
Since the GE imagery only contains the red, green, and blue (RGB) 
bands, the poor spectral information may inevitably prevent the use of 
effective bands or derived indexes for accurate tree detection (Huete 
et al., 1997; Tucker, 1979). 

In addition to the spatial resolution consideration, the phenological 
information also has significant effects on improving the accuracy of tree 
species mapping (Evangelista et al., 2009; Fang et al., 2018; Lu and 
Wang, 2021; Pu et al., 2018). Different tree species possess their specific 
phenological trajectories. The unique spectral characteristics that trees 
present in their phenological periods (i.e., leafless period, senescence 
period) may enhance the spectral separability between the target tree 
species and others (Li et al., 2021; Wang et al., 2013). Historically, single 
key phenological period was considered helpful for tree species detec-
tion (Li et al., 2021; Masemola et al., 2020), for example, Ji and Wang 
(2016) employed the composite images during the coloration period of 
an invasive species (i.e., saltcedar) to monitor its distribution in the 
western U.S., and obtained an overall accuracy of higher than 93 %. 
However, two issues may exist with the leverage of single key pheno-
logical period for PaWs detection: (1) the single key phenological period 
can hardly encompass all the distinct spectral characteristics of PaWs 
over a growth cycle. Spectral confusion may exist if the target tree 
species and other species present similar spectral characteristics during 
this period, especially in the heterogeneous urban environment; (2) the 
single period may suffer from poor robustness to perform tree species 
detection. Image unavailability or poor image quality during this period 
will make it difficult to guarantee the classification accuracy. Alterna-
tively, the time series images have been proved to be more efficient in 
tree species mapping (Grabska et al., 2019; Kollert et al., 2021; Pastor- 

Guzman et al., 2018). For example, Diao and Wang (2016) employed 
the monthly time series images to establish the phenological trajectory 
of saltcedar (Tamarix spp.), and achieved an overall accuracy of 88.54 
%, which had proved the effectiveness and robustness of time series 
images in tree species mapping. However, there are still limitations 
which may hamper the mapping precision: (1) the monthly time-series 
images cannot capture the intra-month variations in vegetation 
phenology. Since the vegetation phenological periods may vary drasti-
cally within a month time, using monthly time series images may lose 
information about the changes in vegetation phenological periods, thus 
drastically impacting the detection accuracy; (2) sufficient images to 
construct the phenological trajectory are difficult to guarantee. Limited 
by the satellite revisit cycles and cloud contamination issues, it is usually 
difficult to acquire sufficient time series images to support such a tree 
species detection strategy. Recently, researches have strived to utilize 
the multiple key phenological periods for invasive species or crops 
monitoring. Multiple key phenological periods rely fewer on images and 
can reflect the phenological characteristics more comprehensively. It 
has been utilized in monitoring invasive species or paddy rice (Ni et al., 
2021; Wu et al., 2020). However, there is no study applying the multiple 
key phenological period-based detection strategy to tree species map-
ping, let alone in the highly heterogeneous urban environment. 

Therefore, the objective of this study was to develop a PaWs detec-
tion strategy by stacking the spatial feature from sub-meter imagery and 
the multiple key phenological features from Sentinel-2 imagery. More 
specifically, we strived to: (1) develop a sub-meter phenological spectral 
feature (Spsf) to make full use of the spatial information of free sub- 
meter remote sensing images and the spectral information of multiple 
key phenological periods; (2) conduct the sub-meter accurate mapping 
of PaWs in the Beijing Plain for the first time. In short, this study not only 
advanced the method development for urban tree species classification, 
but also broke the barriers associated with high cost of sub-meter species 
mapping. This study can thus facilitate the shaping of a new paradigm 
for sub-meter tree species mapping. The derived PaWs map can serve as 
a basic reference data for relevant departments in the monitoring and 
managing of PaWs. 

2. Study area and data 

2.1. Study area 

The Beijing Plain, located in the southeast of Beijing (39.28◦N to 
41.05◦N and 115.25◦E to 117.35◦E), is the study area of this research 
(Fig. 1). PaWs, as the major species for the Beijing Plain, have been 
widely planted for sightseeing, producing wood, and combating 
desertification. However, the PWCs have caused serious troubles to 
people’s lives and environment. When people are exposed to the envi-
ronment of PWCs, they are prone to allergic reactions and respiratory 
diseases. The distribution characteristics of PaWs in the Beijing Plain, 
such as severe fragmentation, surrounded by a diversity of other tree 
species, and high spectral similarity between PaWs and surrounding 
species, have made it difficult to acquire the accurate mapping of PaWs. 
To date, there is no accurate mapping product for the distribution of 
PaWs in the Beijing Plain. 

2.2. Datasets 

2.2.1. Remote sensing imagery 
The remote sensing images used in this study mainly include the GE 

imagery and Sentinel-2 imagery: (1) GE 19 level remote sensing imagery 
with a spatial resolution of 0.56 m was adopted. In view of the diversity 
of GE data sources, the partitioned strategy was applied to obtain data 
with the aim to ensure the data quality. The entire study area was 
divided into the 10*10 fishnet with a total of 100 subareas. For each 
subarea, we filtered the images with the least cloudiness from the 2019 
~ 2020 summer images. Then all the subarea images were mosaicked 
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into a complete image of the entire study area in ArcGIS 10.2. Ten 
typical regions were chosen from the GE imagery as the samples used in 
the deep learning (DL) model. For each region, the unsupervised multi- 
resolution segmentation was performed in eCognition Developer 64 
(eCognition Developer, 2014) to acquire image feature objects, and then 
all the image objects of each typical region were assigned land cover 
attributes manually; (2) all the available Sentinel-2 surface reflectance 
(SR) images covering the whole study area were taken as the input data 
to analyze the spectral characteristics of PaWs during the distinct 
phenological periods. And we acquired the images from the Google 
Earth Engine (GEE) throughout the whole year of 2019 ~ 2020. 
Meanwhile, the summer RGB bands of Sentinel-2 SR images from 2019 
~ 2020 were also used in this study. 

2.2.2. Field survey data 
The field survey data were obtained from two aspects. The first 

aspect was through field measurements in the summer of 2020. We 
recorded the coordinates of PaWs through the GPS device and took field 
photos in the Beijing Plain. The second aspect was via the Baidu Street 
View Maps. The Baidu Street View application programming interface 
(API) was leveraged to achieve massive Street View data acquisition, 
which facilitates the expansion of field survey data. In total, we obtained 
2,390 sample points in the Beijing Plain (Fig. 1), including 1,500 PaWs 
samples and 890 non-PaWs samples, and these points were distributed 
evenly in our study area. Among these samples, half of the PaWs sample 
points (750 points) and half of the non-PaWs sample points (445 points) 
were used to assist in obtaining the DL training samples, and the 
remaining PaWs and non-PaWs sample points were used for accuracy 
validation of the DL prediction results. 

2.2.3. DL training data 
The object-based method was used for generating DL training labels, 

and the process can be divided into three steps: (1) performing the un-
supervised multi-resolution segmentation in ten typical regions to 
obtain the image objects; (2) the image objects were assigned land cover 
attributes manually according to the prior knowledge, along with the 
Baidu Street View Map and field survey data; (3) all the samples were 
split into labels of size 512*512 to perform DL training. 

The unsupervised multi-resolution segmentation, applied to generate 
image objects in eCognition Developer 64 (eCognition Developer, 2014) 
is a bottom-up region merging technique (Dorren et al., 2003). The 
larger the segmentation scale, the larger the merged image objects, and 
vice versa. The larger the segmentation scale, the smaller the total 
number of image objects and the lower the purity of the land cover in an 
image object. However, too small segmentation scale may lead to an 
excessive number of image objects, resulting in redundant information. 
Consequently, an optimal segmentation scale is critical. According to the 
visual interpretation and previous research (Johnson and Xie, 2011; 
Wang et al., 2021), 21 segmentation scales ranging from 20 to 100 with 
the step of 4 were utilized to perform multi-resolution segmentation. 
The optimal segmentation scale was identified through the criteria of the 
maximum inter-object heterogeneity and the intra-object homogeneity 
(Johnson and Xie, 2011; Zhang et al., 2008). Finally, the optimal seg-
mentation scale was determined with the minimum global score (GS) 
value, and the details of calculating GS can be found in our previous 
study (Wang et al., 2021). 

The optimal segmentation scales of the ten typical areas were pre-
sented in a histogram (Fig. 2). The optimal scales for the ten areas were 
68, 52, 80, 68, 32, 44, 44, 40, 68, and 48, respectively. Each typical area 
was segmented according to the optimal segmentation scale to generate 
the image objects which were subsequently utilized for obtaining the DL 

Fig. 1. The Sentinel-2 SR image of Beijing Plain, the red points represent the distribution of 2,390 field survey sample points. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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samples. 
Based on the image objects obtained by the optimal segmentation 

scale, the DL training and samples were generated by assigning land 
cover attributes to the image objects in ArcGIS 10.2. All the ten typical 
areas performed the above operations similarly. Subsequently, all the 
samples were split into labels of size 512*512. Since the pixels on the 
edge of labels contain fewer contextual information, which may lead to 
unreliable predictions for these pixels, all labels were set with an overlap 
rate of about 15 % when cropped out of the samples (Chen et al., 2018). 
Finally, 1,100 labels were acquired as the input data for performing DL 
training. All the labels were evenly distributed in the study area. 

2.2.4. Accuracy validation data 
After the DL training and prediction, necessary accuracy validation 

was performed on the derived mapping products. The field survey 
sample points, including 750 PaWs samples and 445 non-samples were 
used for accuracy validation. And the assessment metrics used in this 
study were the overall accuracy (OA), producer accuracy (PA), user 
accuracy (UA), and the Kappa coefficient. 

3. Methods 

The methods used in this research include three parts. First, the Spsf- 
based method was developed to acquire a new feature which incorpo-
rated the three key phenological periods of PaWs and GE sub-meter 
image. Second, comparative experiment was performed to evaluate 
the improvement in spectral separability with Spsf. Third, the Spsf-based 
composite image was taken as the input data for DL DeepLabv3 +
training and obtaining the PaWs distribution of the Beijing Plain. 

3.1. The sub-meter phenological spectral feature (Spsf) 

There were three main steps to applying the Spsf-based method: (1) 
cloud masking was performed on the Sentinel-2 SR imagery to reduce 
the impact of cloudiness on image quality (2) exploring three key 
phenological periods of PaWs by analyzing the temporal profile of Green 
Chlorophyll Vegetation Index (GCVI) (Gitelson et al., 2003), Normalized 
Difference Vegetation Index (NDVI) (Tucker, 1979), and Plant Senes-
cence Reflectance Index (PSRI) (Merzlyak et al., 1999) during 2019 ~ 
2020; (3) selecting one or three spectral vegetation indexes for charac-
terizing each key phenological period. The Spsf was developed by 
compositing the GE sub-meter imagery and the characterized three key 
phenological periods imagery. The flowchart of Spsf can be seen in 

Fig. 3. 

3.1.1. Cloud masking 
With the purpose of reducing the impact of cloudiness on image 

quality, cloud masking should be carried out prior to the analysis of the 
Sentinel-2 SR imagery. First, for the entire scene, the image property 
taken from the metadata, CLOUDY_PIXEL_PERCENTAGE, was used to 
screen out the images with more than 70 % cloud volume with reference 
to the previous research (Hermosilla et al., 2016). The opaque and cirrus 
cloud pixels were further masked off with the cloud information in the 
bit 10 and bit 11 of the QA60 bitmask embedded in the Sentinel-2 im-
agery, respectively. 

3.1.2. Identifying the key phenological periods of PaWs 
The analysis of PaWs phenological periods was implemented in GEE 

using the time series of Sentinel-2 SR images, and the temporal profiles 
of GCVI, NDVI, and PSRI were acquired to analyze the key phenological 
periods of PaWs. The temporal profiles of the three indexes were derived 
by calculating 150 pure PaWs sample points evenly distributed in the 
study area on all available cloud masked images from Jan. 2019 to Dec. 
2020. The days in 2019 ~ 2020 were mosaicked into one year and or-
dered by Day of Year (DoY) for acquiring enough available images and 
reducing the impacts of extreme weather. It is important to note that as 
for the tree species with high interannual variability in phenological 
periods, it would be a better choice to apply the one-year image when 
enough images are available. At the same time, we calculated the me-
dian value of all the raw values on each DoY. Clouds and atmospheric 
conditions, however, can cause remote sensing time series imagery to be 
contaminated by noise (Pastor-Guzman et al., 2018). Therefore, neces-
sary operations should be performed to smooth the time series images 
before the subsequent analysis. The Savitzky-Golay (SG) algorithm 
(Savitzky and Golay, 1964), a polynomial smoothing algorithm based on 
the principle of least-squares, had been proved to be more robust and 
efficient in reducing the contamination caused by clouds and the at-
mosphere from time-series imagery (Chen et al., 2004). Therefore, in 
this research, all the median values of DoY were smoothed by the SG 
algorithm to generate the average annual profile. According to the 
previous research (de Castro et al., 2018; Ni et al., 2021) and the 
characteristics of the median values of all PaWs vegetation indexes, the 
smoothing window and degree of smoothing polynomial were set to be 
20 and 2, respectively. The smoothed temporal profiles of the three in-
dexes were shown in Fig. 4. The grey points represent the raw values of 
different index values. The blue line represents the median value of all 

Fig. 2. The optimal segmentation scales of the ten typical areas.  

X. Li et al.                                                                                                                                                                                                                                        



ISPRS Journal of Photogrammetry and Remote Sensing 193 (2022) 77–89

81

the grey points of each DoY, and the red line indicates the smoothed 
result of the median value by the SG algorithm. The reasons why the 
three indexes (GCVI, NDVI, and PSRI) were chosen as the indicator of 
phenological periods were explained as follows: 

First, in the leafless period of PaWs, there is no leaf on the PaWs but 
there are leaves on the evergreen trees. During this period, the soil signal 
may affect the vegetation reflectance significantly, making it difficult to 
detect the weak chlorophyll signal (Huete, 1988). While the GCVI can 
respond to lower chlorophyll levels, and the broad spectral band char-
acteristics make it a high sensitivity and signal-to-noise ratio for chlo-
rophyll content (Gitelson et al., 2003). Consequently, the GCVI was used 
as an indicator of the leafless period of PaWs to distinguish PaWs and the 
evergreen vegetation. Second, NDVI is chlorophyll sensitive and has 
been widely applied in the monitoring of photosynthetically active 
biomass of plant canopies (Huete et al., 2002; Tucker, 1979). In the 
greenleaf period of PaWs, the chlorophyll content is increasing. 

Therefore it is suitable for NDVI to monitor greenleaf period of PaWs. 
Finally, PSRI was chosen to indicate the senescence period, because in 
the senescence period, the leaves of PaWs turn yellow. PSRI can respond 
to pigment changes during this leaf senescence period. 

Through the analysis of Fig. 4, three key phenological periods of 
PaWs: leafless period, greenleaf period, and senescence period can be 
identified as follows: 

(1) Leafless period. During the leafless period, there is no leaf on the 
PaWs. The chlorophyll content of the PaWs is at the lowest level of a 
year, which resulted in the steady valley value of GCVI during DoY 0 to 
65. During this time period, NDVI is also at the lowest level of a year. 
Consequently, the DoY of 0 to 65 was regarded as the leafless period. 

(2) Greenleaf period. The leaves of PaWs are mature and with high 
canopy densities, the chlorophyll content of PaWs achieves the highest 
in a year. According to Fig. 4, the value of NDVI is at the maximum level 
while the value of PSRI is at the minimum level during DoY of 145 ~ 

Sentinel-2 SR data during 2019~2020

Cloud masking

Analyzing the phenology of PaWs through three spectral 
vegetation indexes (GCVI, NDVI, PSRI)

Median composite in GEE

Leafless Period
(DoY: 0~75)

Greenleaf Period
(DoY: 145~255)

Senescence 
Period

(DoY: 270~340)

GCVIs NDVIs, EVIs, 
LSWIs PSRIs

Summer RGBs

RGBs

GCVI NDVI, EVI, 
LSWI PSRI RGB

Spsf-based composited image (five indexes,
GE RGB image and Sentinel-2 RGB image)

GCVIs NDVIs PSRIs

GE  sub-meter cloudless mosaicking RGB image
(summer images from 2018~2020)

Data 
&

preprocessing

Phenology
analysis

Image 
compositing

Feature stacking

Unifying the spatial resolution (nearest resample
to 0.8m) and stacking all the features

Fig. 3. The flowchart of proposed Spsf.  
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255. Therefore, the DoY of 145 to 255 was taken as the greenleaf period. 
(3) Senescence period. During the senescence period, the leaves of 

PaWs gradually turn yellow. Correspondingly, the senescence signature 
of PaWs increases progressively, and the chlorophyll content is gradu-
ally declining. During the DoY of 270 to 340, the value of PSRI increases 
while the NDVI value decreases steadily. Thus the DoY of 270 to 330 was 
defined as the senescence period. 

3.1.3. Image composition 
According to the identified three key phenological periods, a new 

feature was constructed by the three key phenological periods and the 
multi-scale RGB images. Five spectral vegetation indexes were taken to 
characterize the three phenological periods. The five indexes were GCVI, 
NDVI, Enhanced Vegetation Index (EVI) (Huete et al., 2002; Huete et al., 
1997), Land Surface Water Index (LSWI) (Xiao et al., 2004), and PSRI 
(Table 1), respectively. All the spectral vegetation indexes data was 
derived from the Sentinel-2 SR images on the GEE platform. Among the 
five indexes, the GCVI was used in leafless period; NDVI, EVI, and LSWI 
were used in greenleaf period; PSRI was applied to the senescence 
period. The multi-scale RGB images were the sub-meter GE images and 
the 10 m Sentinel-2 RGB images acquired on GEE. For each vegetation 
index image acquired from the GEE platform, the median value pixel- 
based image composite method was used, specifically, each pixel of 
the vegetation index images was obtained by taking the median index 
value of all available pixels. Afterwards, all the index pixels were 
composited into a complete image. The reason why the five indexes were 
chosen for constructing the new feature was as follows: (1) GCVI, 
designed as an indicator of vegetation chlorophyll content, was sensitive 
to the appearance of green leaves. In this study, GCVI was used in the 
leafless period of PaWs to differentiate it from the evergreen vegetation. 
(2) NDVI is sensitive to vegetation growth, whereas it has been found 
that NDVI will gradually saturate when the biomass continues to 
elevate, especially in the greenleaf period of PaWs. By contrast the EVI 
will remain sensitive to the high biomass periods (Cai et al., 2018; Huete 
et al., 2002; Pastor-Guzman et al., 2018). Therefore, the NDVI and EVI 
were both used complementarily in the greenleaf period of PaWs. (3) 

The shortwave infrared (SWIR) band is crucial to the assessment of 
vegetation water content, and the NIR-SWIR vegetation indexes can 
respond to the change of the leaf water content (Brook et al., 2020; 
Ceccato et al., 2002; Yan et al., 2010). Consequently, the LSWI was taken 
as the indicator of the water content of vegetation (Xiao et al., 2002; 
Xiao et al., 2004). During the greenleaf period of PaWs, the leaf water 
content is at the highest level in a year and transpiration of PaWs may 
lead to the increase of water content in canopy. LSWI has the potential to 
monitor the changes of water content, and was thus selected during the 
greenleaf period. (4) In the senescence period, the leaves of PaWs turn 
yellow. PSRI can respond to pigment changes during the leaf senescence. 
Consequently, we employed the PSRI to characterize the senescence 
period of PaWs. 

3.2. Evaluation of spectral separability 

The classification accuracy depends on the inter-class spectral 
separability to a large extent (Kailath, 1967; Tolpekin and Stein, 2009). 
To evaluate the effectiveness of our proposed method (Spsf) in 
improving the spectral separability between PaWs and other tree species 
as well as reducing redundant information, comparative experiments 
were conducted on spectral separability between the Spsf images and 
other composite images. The multiple composite images were obtained 
through arranging and combining the different phenological images. All 
the composite images can be seen in Table 2. Considering the circum-
stances that the urban tree species are diverse and the surrounding 
species of PaWs are various and irregular, we divided the surrounding 
species of PaWs into evergreen and deciduous tree species. The Jeffries- 
Matusita (JM) distance, a widely applied spectral separability indicator, 
was employed to quantify the spectral separability between PaWs and 
the surrounding species. The value range of JM is 0 ~ 2, and the larger 
the JM values, the higher the spectral separability between classes, and 
vice versa (Schmidt and Skidmore, 2003). In this research, all the JM 
values were calculated by ENVI 5.3. Limited by the processing speed and 
image storage space of ENVI 5.3, two small areas of each composite 
image in the study area were selected to calculate the JM distance. The 
vegetation distribution between the two areas was different, and each 
small area covered roughly-one-tenth of the entire study area. 

3.3. DL training and prediction 

In addition to the composite feature, an effective classifier is of great 
importance to PaWs identification. Machine learning has been widely 
used in remote sensing image processing. As one of the branches of 
machine learning, DL has been demonstrated great potential in image 
classification over the past few years (Kussul et al., 2017; Liu et al., 
2020). Compared to traditional machine learning, DL can learn the 

Fig. 4. (a), (b), and (c) represent the temporal profile of GCVI, NDVI, and PSRI, respectively.  

Table 1 
The formulas of spectral indexes used in the phenological periods of PaWs.  

Spectral 
index 

Formulation Phenological 
periods 

GCVI GCVI = NIR / Green − 1 Leafless period 
NDVI NDVI = (NIR – Red) / (NIR + Red) Greenleaf period 

Greenleaf period  

Greenleaf period 

EVI EVI = 2.5 × (NIR-Red) / (NIR + 6 × Red − 7.5 
× Blue + 1) 

LSWI LSWI = (NIR - SWIR) / (NIR + SWIR) 
PSRI PSRI= (Red - Blue) / Red Edge 2 Senescence period  

X. Li et al.                                                                                                                                                                                                                                        



ISPRS Journal of Photogrammetry and Remote Sensing 193 (2022) 77–89

83

context surrounding the object of interest and take the relationship 
among pixels into account (Korznikov et al., 2021). Semantic segmen-
tation is one of the fundamental topics in computer vision, and a 
multitude of DL models have been developed for semantic segmentation. 
To our knowledge, DeepLabv3+, as the state-of-the-art version of 
DeepLabv3, plays an important role in simplifying the interpretation of 
remote sensing images (Sun and Wang, 2018). In this study, DeepLabv3 
+ was taken as the semantic segmentation model for DL training. 
Meanwhile, the DenseNet convolutional neural network (CNN) was 
chosen as the backbone network of DeepLabv3 + in this research. There 
were several remarkable merits of DenseNet. For example, through the 
DenseNet backbone, the problem of vanishing gradient can be allevi-
ated. The features can be transferred and reused more effectively, and 
the number of parameters can be reduced significantly. Moreover, the 
flow of information and gradients can be improved, which makes the 
training more easily (Huang et al., 2017; Wang and Chang, 2019). 

Consequently, referring to the study of (Wang and Chang, 2019), the 
DenseNet-121 version was applied in the DeepLabv3 + model. 

The Windows 10 machine, equipped with the GPU of RTX 3090 and 
24 GB memory, was used for DL training and prediction with the Ten-
sorFlow framework. The initial learning rate was set to be 0.001, and the 
training batch size was 10, and the training number of epochs was set to 
be 1000. The MeanIoU and loss were taken as the indicators to evaluate 
the trained models and the model with the maximum MeanIoU and the 
minimum loss was considered as the optimal prediction model. The code 
used in this study for semantic segmentation and details about the 
configuration of DeepLabv3 + model training and prediction were 
referenced the https://github.com/TachibanaYoshino/Remote-sensi 
ng-image-semantic-segmentation-tf2. 

4. Results 

4.1. Evaluation of spectral separability 

In order to evaluate the effectiveness of Spsf in improving spectral 
separability between PaWs and other tree species, the JM values were 
calculated using all the composite images. Fig. 5 showed the JM values 
between PaWs and other deciduous (or evergreen) tree species for 15 
types of composite images. For the spectral separability between PaWs 
and evergreen trees, the basic GE RGB imagery (a) got the consistently 
minimum JM values (range from 0.12 to 0.48) in two areas. In contrast, 
the maximum JM values (range from 1.77 to 1.89) were achieved by the 
Spsf-based image (abcde), and followed by the combination of basic 
image and leafless period, greenleaf period, and Sentinel-2 RGB image 
(abcd), ranging from 1.70 to 1.86. Meanwhile, we found that the leafless 
period contributed the most to the improvement of the JM values be-
tween PaWs and evergreen tree species (from 0.12 to 1.09 and from 0.48 
to 1.45) when adding the images of a single phenological period to the 
basic GE RGB image. As regards the spectral separability between PaWs 
and other deciduous tree species, the basic GE RGB image (a) got the 
minimum JM value (1.20 and 0.87) similarly. The Spsf-based image 
(abcde) achieved the maximum JM values (1.71 and 1.65), followed by 
the combination of basic image and leafless period, greenleaf period, 
and Sentinel-2 RGB image (abcd), with a range from 1.69 to 1.57. The 
results showed that the spectral separability between PaWs and other 
deciduous (or evergreen) vegetation was the lowest based on the GE sub- 
meter image. And the spectral separability increased with the incorpo-
ration of the phenological features. Finally, the Spsf-based method 
reached the highest spectral separability, which meant that the Spsf- 
based method help greatly in the improvement of classification 

Table 2 
The composite images and their corresponding bands or indexes.  

imagery Corresponding bands / indexes Expression 

Basic image GE RGB bands (GE RGB) a 
Basic image, Sentinel-2 image GE RGB, S2 RGB ab 
Basic image, leafless GE RGB, GCVI ac 
Basic image, greenleaf GE RGB, NDVI, EVI, LSWI ad 
Basic image, senescence GE RGB, PSRI ae 
Basic image, Sentinel-2 image, 

leafless 
GE RGB, S2 RGB, GCVI abc 

Basic image, Sentinel-2 image, 
greenleaf 

GE RGB, S2 RGB, NDVI, EVI, 
LSWI 

abd 

Basic image, Sentinel-2 image, 
senescence 

GE RGB, S2 RGB, PSRI abe 

Basic image, Sentinel-2 image, 
leafless, greenleaf 

GE RGB, S2 RGB, GCVI, NDVI, 
EVI, LSWI 

abcd 

Basic image, Sentinel-2 image, 
leafless, senescence 

GE RGB, S2 RGB, GCVI, PSRI abce 

Basic image, Sentinel-2 image, 
greenleaf, senescence 

GE RGB, S2 RGB, NDVI, EVI, 
LSWI, PSRI 

abde 

Basic image, leafless, greenleaf GE RGB, GCVI, NDVI, EVI, 
LSWI 

acd 

Basic image, leafless, senescence GE RGB, GCVI, PSRI ace 
Basic image, greenleaf, senescence GE RGB, NDVI, EVI, LSWI, 

PSRI 
ade 

Basic image, leafless, greenleaf, 
senescence 

GE RGB, GCVI, NDVI, EVI, 
LSWI, PSRI 

acde 

Sentinel-2 image, leafless, 
greenleaf, senescence 

S2 RGB, GCVI, NDVI, EVI, 
LSWI, PSRI 

bcde 

Basic image, Sentinel-2 image, 
leafless, greenleaf, senescence 

GE RGB, S2 RGB, GCVI, NDVI, 
EVI, LSWI, PSRI 

abcde  

Fig. 5. The JM value results of 15 composite images in area1 and area2.  
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accuracy. Furthermore, we found that when only single period was 
incorporated in the basic GE image, the greenleaf period was the most 
effective in enhancing the spectral separability between PaWs and other 
deciduous trees (JM value from 1.19 to 1.44 and from 0.87 to 1.15), and 
the senescence period helped most in enhancing the spectral separability 
between PaWs and evergreen trees (JM value from 0.12 to 1.09 and from 
0.48 to 1.45). 

As a whole, the Spsf-based method achieved the maximum JM value 
between PaWs and other tree species. Therefore, in this research, it is 
more appropriate to combine the three phenological periods, the basic 
GE imagery and Sentinel-2 SR imagery. 

4.2. Classification accuracy 

With the optimal composite image (Spsf), the DeepLabv3 + semantic 
segmentation model was employed for training, and the DenseNet-121 
was taken as the classification CNN. After the 1000 training epochs, 
we obtained the optimal model with MeanIoU of 0.95 and loss of 0.015. 
The Spsf map was then acquired through the optimal model. The ac-
curacy of the Spsf map was assessed using the field survey data acquired 
in 2020. As shown in Table 3. The Spsf achieved the overall accuracy 
(OA) of about 91 %, and the Kappa coefficient of 0.83. The producer 
accuracy (PA) and the user accuracy (UA) of PaWs were 90.45 % and 
95.27 %, respectively. Some details about the prediction results can be 
seen in Fig. 6. We found that the DL prediction results can match the 
validation labels well. For the first row, despite the fragmented distri-
bution and small size of PaWs on both sides of the road, those PaWs 
areas can be accurately predicted by the proposed Spsf-based DL model. 
Similarly, discrete PaWs distributed in the park can be accurately clas-
sified in the third row. As for the second row, the PaWs are densely 
distributed and large in size, and the DL prediction results are highly 
accurate compared with the validation samples. Meanwhile, the small 
intervals between the PaWs can be identified. The complete prediction 
results of PaWs can be found in the following GEE application URL: https 
://2200902201.users.earthengine.app/view/spsf. 

Despite promising results achieved, there still existed some omis-
sions and commissions possibly due to the following reasons. First, we 
acquired the GE RGB image from 2019 ~ 2020, while the field survey 
data was acquired in 2020. The changes of land cover types may result in 
the errors in the classification results. Second, some shadows were 
misclassified as PaWs. Third, although the partitioning method was used 
to acquire the GE RGB image, the image quality of some areas were still 
not satisfactory, possibly leading to the poor prediction results for these 
areas. More analysis about the uncertainty of the prediction results will 
be shown in the discussion section (Section 5.2). 

The phenological features can improve the classification accuracy by 
augmenting the spectral separability between PaWs and others. The 
effectiveness can be quantified by JM values while the effect of the rich 
spatial information contained by GE imagery cannot be assessed with 
this measure. Although the VHR GE imagery was rarely taken as a single 
data source for classification, the rich spatial information was useful for 
improving the accuracy of urban tree species detection (Dong et al., 
2019). Therefore, comparative experiments were performed to demon-
strate the irreplaceable effect of GE imagery on optimizing classification 
results. To ensure a reasonable comparison, we set the same parameters 
for the GE RGB band removed image as those for the Spsf-based image 
when training the DL model. Finally, we acquired the MeanIoU of 0.89 

and loss of 0.021. Thereafter, 890 PaWs field survey sample points and 
610 non-PaWs sample points were utilized for accuracy validation on 
the PaWs map derived from the optimal prediction model. As shown in 
Table 4, the final prediction results reached an overall accuracy of 0.87 
and the Kappa coefficient of 0.74. The detailed comparison results can 
be found in Fig. 7. Columns a, and e represent the GE sub-meter image 
and the Sentinel-2 image resampled to 0.8 m resolution, respectively. 
We found that ground objects can be presented clearly by the GE sub- 
meter image while the Sentinel-2 image cannot delineate the bound-
ary of ground objects precisely. Compared with the Spsf-based method, 
the OA decreased approximately by 5 % based on the image with GE 
RGB bands removed. Although the OA only slightly decreased, we found 
that the PA and UA of PaWs decreased largely (dropped from 90.45 % to 
78.20 % and from 95.27 % to 75.69 %). The prediction results of the GE 
RGB band removed image had significant omission errors (see the row a, 
and b of the fourth column) and commission errors (see the row c of the 
fourth), and there were only 696 of 840 PaWs sample points correctly 
classified. The comparison results indicated the irreplaceable role of GE 
sub-meter images for accurate tree species classification. 

4.3. Uncertainty analysis 

Although the good results from the Spsf method, there are still 
several uncertainty factors that may affect the final mapping results. The 
classification accuracy depends on the inter-class spectral separability to 
a large extent (Kailath, 1967; Tolpekin and Stein, 2009). And the JM 
distance, as a spectral separability indicator, has been widely used to 
quantify the spectral separability in land cover classification (Ni et al., 
2021; Tian et al., 2020). The value range of JM is 0 ~ 2, and the larger 
the JM values, the higher the spectral separability between classes, and 
vice versa (Schmidt and Skidmore, 2003). Therefore, the JM values were 
taken to quantify the uncertainties in the Spsf method. And the uncer-
tainty analysis mainly includes two aspects: (1) sub-meter GE RGB im-
agery; (2) phenological spectral features. First, the sub-meter GE RGB 
imagery not only enriched the spectral information, but also provided 
rich spatial information for the Spsf feature. The improvement of the 
spectral separability by GE imagery is quantified by the JM values, and 
the function of the spatial information was reflected by the final map-
ping accuracy. As for the JM values (Fig. 5), we compared the results of 
the Spsf image (abcde) and the GE RGB band removed image (bcde). We 
found that the spectral separability was enhanced when the GE imagery 
was incorporated, and the JM values between PaWs and the deciduous 
vegetation (from 1.49 to 1.70 and from 1.53 to 1.64) increased more 
significantly than the values between PaWs and the evergreen vegeta-
tion (from 1.72 to 1.77, and from 1.84 to 1.87). That may relate to the 
acquisition time of GE imagery, the summer imagery may be more 
effective in distinguishing PaWs from deciduous vegetation. Further-
more, the accuracy of the prediction results for Spsf image and the GE 
RGB band removed image were compared. When the GE imagery was 
removed, the omission errors and commission errors increased signifi-
cantly. The OA decreased from 91.67 % to 86.67 % and Kappa decreased 
from 0.83 to 0.74, which has shown the indispensable role of spatial 
information from GE imagery in improving the mapping accuracy. 
Second, the phenological spectral features in Spsf method were derived 
from the three key phenological periods. The JM values represented the 
contribution of each phenological period to the final mapping accuracy. 
Phenological spectral features from the composition of three key 
phenological periods achieved the highest JM values (abcde), and the 
JM values decreased with the reduction of phenological spectral fea-
tures. And we found that the spectral separability between PaWs and the 
deciduous vegetation was most significantly reduced when the greenleaf 
period feature was removed (from 1.71 to 1.52 and from 1.65 to 1.45), 
and when the leafless period feature was removed, the spectral separa-
bility between PaWs and the evergreen vegetation decreased the most 
(from 1.77 to 1.48 and from 1.89 to 1.38). The above showed that the 
three key phenological periods contributed unequally in enhancing the 

Table 3 
Accuracy assessment of the Spsf-based PaWs map.  

Class Ground truth samples PA (%) UA (%) OA (%) Kappa 

PaWs Non-PaWs 

PaWs 805 85  90.45  95.27 91.67 0.83 
Non-PaWs 40 570  93.44  87.02  
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spectral separability, the leafless period is the most effective in 
enhancing the spectral separability between PaWs and the evergreen 
vegetation, and the greenleaf period helped most to distinguish PaWs 
and the deciduous vegetation. 

5. Discussion 

5.1. The advantages of the Spsf method 

Constructing the urban tree species mapping has been a challenge for 
a long time due to two constraints: (1) the complex composition and 
severe fragmentation of urban tree landscapes, which may result in the 
existence of mixed pixels; (2) the tree species in urban environment are 
diverse with high spectral similarity. The sub-meter GE remote sensing 
images can not only solve the issue of mixed pixels caused by coarse 
resolution images (Du et al., 2017), but also are less constrained by cost, 
time, and space. Utilizing the phenological features has been considered 
to be effective to enhance the spectral separability (Fang et al., 2020; 
Zeng et al., 2020). Consequently, a sub-meter phenological spectral 

Fig. 6. Comparisons of some details about the label images and the corresponding DL prediction results. The first column represents the GE RGB image; the second 
column indicates the label image used for validation; the third column is the DL prediction results of Spsf. The a, b, and c represent three different growth scenes of 
PaWs growth, respectively. Row a represents the densely small area of PaWs along the road, row b is the densely large area of PaWs, and row c indicates the 
fragmented small area PaWs in the park. 

Table 4 
Accuracy assessment of the PaWs map derived from the images without the GE 
RGB bands.  

Class Ground truth samples PA (%) UA (%) OA (%) Kappa 

PaWs Non-PaWs 

PaWs 696 194  78.20  75.69 86.67 0.74 
Non-PaWs 6 604  99.02  99.15  
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feature (Spsf) was developed to conduct the accurate mapping of PaWs 
in the urban area (the Beijing Plain). The promising results of Spsf may 
attribute to two aspects: (1) Spsf explored three key phenological pe-
riods of PaWs and characterized them through five spectral vegetation 
indexes, which largely help enhance the spectral separability between 
PaWs and others; (2) Spsf made the utmost of the spatial information of 
free sub-meter GE imagery and the spectral-phenological information of 
Sentinel-2 SR imagery, which can minimize the occurrence of mixed 
pixels. 

5.1.1. The importance of three key phenological periods 
Three key phenological periods specific to the PaWs were incorpo-

rated to augment the spectral separability between PaWs and others. 
Those periods can help distinguish tree species with different pheno-
logical patterns to improve the mapping accuracy (Diao and Wang, 
2016). In the leafless period, there is no leaf on the deciduous trees, but 
there are leaves on the evergreen trees. Although the spectral charac-
teristics during this period cannot be leveraged to differentiate PaWs 
from other deciduous trees, they can be used effectively to distinguish 
PaWs from the evergreen trees. In the greenleaf period, the leaves of 
PaWs are gradually mature with high canopy densities. Because of the 
high transpiration of PaWs (Guidi et al., 2008; Isebrands and Richard-
son, 2014), the moisture level on the surface of PaWs is higher than 
other deciduous trees, which can be taken as a feature to distinguish 
PaWs from others. In the senescence period, the leaves of PaWs are 
gradually turning yellow. Because the poplars have a long growing 
period with extended coloration, in the senescence periods of PaWs, the 
leaves of most other deciduous trees have already withered while the 
leaves of evergreen trees are still green. Therefore, the spectral separa-
bility among PaWs, other deciduous tree species, and evergreen tree 
species can be enhanced in the senescence period. 

In addition to the three key phenological periods, it is also important 
to select appropriate spectral vegetation indexes to characterize the key 
phenological periods to enhance the spectral separability between PaWs 
and other trees (Inoue et al., 2020; Ni et al., 2021; Zhang et al., 2020). In 
this research, five spectral indexes (i.e. GCVI, NDVI, EVI, LSWI, and 
PSRI) were applied to characterize the three phenological periods of 
PaWs for the first time. The JM values (see Section 4.1) indicated the 
great potential of spectral indexes in augmenting the spectral separa-
bility between PaWs and others. The GCVI, sensitive to the change of 
chlorophyll and leaf area, was taken to characterize the leafless period in 
which the difference between PaWs and evergreen trees can be reflected 
in the chlorophyll content. The NDVI, EVI, and LSWI were selected to 
characterize the greenleaf period because of their demonstrated per-
formance in the identification of the chlorophyll signal and leaf water 
content. In the greenleaf period, the chlorophyll and water content are at 
the peak of a year. Despite the sensitivity of NDVI to chlorophyll content, 
it tends to saturate gradually in the high biomass regions which may 
limit the accuracy of detection results. Alternatively, EVI can sensitively 
capture the variations of vegetation canopy structures of high biomass 
regions which may complement NDVI in tree species detection (Cai 
et al., 2018; Huete et al., 2002; Pastor-Guzman et al., 2018). LSWI is 
water sensitive and is developed to estimate the canopy moisture 
thickness (Cai et al., 2018). Because of the high transpiration of PaWs, 
LSWI was used as an indicator to quantify the leaf water content dif-
ference between PaWs and other trees. Therefore, the NDVI, EVI, and 
LSWI were chosen for characterizing PaWs during the greenleaf period. 
In the senescence period, the leaves of PaWs are gradually turning yel-
low. PSRI was employed in the senescence period because it is more 
responsive to the pigment changes caused by the senescence than other 
indexes (Merzlyak et al., 1999). 

Fig. 7. Some detailed Comparisons between the Label images, Spsf prediction results, and the prediction results of GE RGB band removed image. The first column is 
GE image; the second column represents the reference label image; the third column indicates the prediction results of Spsf-based image; the fourth column features 
the prediction results of image with GE RGB bands removed from Spsf; the fifth column shows the Sentinel-2 RGB image which was resampled to 0.8 m resolution. 
The rows a and b of the fourth column present the omission errors of PaWs, and the row c of the fourth column presents the commission errors of PaWs. 
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5.1.2. The benefits of GE sub-meter RGB imagery 
GE imagery had been proved to be of great potential in object 

detection (Guo et al., 2016; Hu et al., 2013). Through the sub-meter GE 
imagery, we can acquire rich spatial information and solve the issue of 
mixed pixels in remote sensing imagery of relatively coarse spatial res-
olutions (Delrue et al., 2013; Dixit and Agarwal, 2020; Du et al., 2017). 
In this study, sub-meter GE imagery was used as a component of Spsf to 
improve the PaWs mapping accuracy. To demonstrate the indispensable 
role of GE imagery in accurate PaWs mapping, comparative experiments 
were carried out between the Spsf-based image and the GE RGB band 
removed image (as seen in Fig. 7). Columns a, and e of Fig. 7 represent 
the GE sub-meter image and the Sentinel-2 image that were resampled to 
0.8 m resolution, respectively. We found that the prediction results of 
Spsf-based image match well with the actual distribution of PaWs and 
the details of the boundary can be captured with high accuracy, while 
the prediction results of the GE RGB band removed image cannot 
represent the real PaWs distribution accurately. There are also signifi-
cant omission errors (see the row a, and b in the fourth column) and 
commission errors (see the row c in the fourth column) using the GE RGB 
band removed image. This comparative analysis indicated that the GE 
RGB imagery contains abundant land surface information and possesses 
rich spatial characteristics of image objects such as shape and texture (Li 
et al., 2012; Marcos et al., 2018), which can help retain the boundary 
information more completely (Wen et al., 2021). Additionally, contex-
tual information is a dominant feature in VHR images (Mura et al., 
2008), and the CNN-based DL training method can learn the context 
surrounding the object of interest and take the relationship between 
pixels into account. The powerful self-learning capability of CNN en-
ables it to analyze the texture features of images efficiently and extract 
those features automatically which are important for image classifica-
tion. The extracted features can help to detect the spatial variations in 
brightness and intensity of local areas (Li et al., 2020), which is useful 
for identifying the leaf and canopy information of PaWs (Wang et al., 
2016; Zhang et al., 2018). 

5.2. The implications of PaWs map and future work 

This study conducted the sub-meter accurate mapping of PaWs in the 
Beijing Plain. As shown in Section 4.2, the Spsf achieved high accuracy 
and the derived sub-meter PaWs map can be considered a notable 
innovation in urban tree species identification. The PaWs map can 
further facilitate the environmental management of the Beijing Plain to 
improve the residents’ health level. The Beijing Plain is densely popu-
lated and the PaWs are widely planted. When people are exposed to the 
PWCs, allergic reactions and respiratory diseases are more likely to be 
triggered. It is crucial to carry out accurate monitoring and management 
of PaWs. The traditional manual measurement method to detect PaWs is 
time-consuming and labor-intensive. The fragmented distribution of 
PaWs in urban environment, along with the high spectral similarity 
between tree species, also make it difficult for the coarse-resolution 
remote sensing images to achieve accurate tree species identification. 
Despite the potential of high-resolution images, the acquisition cost 
associated with those images hinders the monitoring of PaWs at large 
scales. The Spsf provided a new paradigm for dealing with the above 
issues. What’s more, for other areas encountering the disturbance from 
PWCs, the Spsf-based method can provide a new perspective for urban 
PaWs monitoring and management so that the relevant departments can 
take proactive strategies during the seasons of PWCs to minimize the 
pollution of the urban environment and the harm to human health. 

Although the Spsf map has achieved high accuracy, there are still 
some limitations with this study. First, the GE imagery was obtained 
from different data sensors, so the image may subject to color deviation 
and inconsistent color tone. The color consistency processing was 
thereby worth trying to mitigate these problems. Second, all the 
Sentinel-2 images were acquired through the median composite method 
on the GEE to remove the extreme values caused by clouds and cloud 

shadows (Azzari and Lobell, 2017; Bey et al., 2020; Jin et al., 2019). 
However, the median composite method cannot highlight the peak of 
the data which may be beneficial to the phenological features. Other 
image composite methods could thus be further explored in future 
studies. Third, Spsf was developed by simply stacking the spatial feature 
of sub-meter GE imagery and the phenological feature of Sentinel-2 
imagery. The spatiotemporal fusion of remote sensing imagery may 
take advantage of complementary observations of multi-source data and 
mine for more potential information to enhance target characteristics 
(Shi et al., 2022). Therefore, it is worthwhile to try the feature fusion 
methods for Spsf. Fourth, there were still some shadows misclassified as 
PaWs in the Spsf map, so a shadow removal algorithm could be incor-
porated in future studies to improve the mapping accuracy. Fifth, 
although good results for PaWs mapping have been yielded in the Bei-
jing plain through the Spsf-based method, there may be differences in 
the phenological periods of PaWs in other regions due to the difference 
in climate and surrounding environment. Therefore, more factors should 
be taken into account in the Spsf-based method to develop a more 
generalizable PaWs detection model. Sixth, when there is a lack of a 
certain phenological image, we can use images from adjacent years to 
make up for it, or only use the remaining phenological images to achieve 
relatively good results. Seventh, this study has captured the three key 
phenological periods of PaWs in Beijing Plain, but when applying the 
phenological periods to other tree species, it may lead to poor results 
because different tree species may vary greatly in phenological periods 
(Grillakis et al., 2022; Zhou et al., 2016). Consequently, when mapping 
other tree species, it is necessary to analyze the specific phenological 
periods according to local conditions (e.g. climate) based on the Spsf 
method. 

6. Conclusion 

This study developed a sub-meter phenological spectral feature 
(Spsf) for mapping the distribution of PaWs on a regional scale by 
incorporating the freely sub-meter GE image and phenological features. 
The spectral separability between PaWs and other tree species was 
improved largely, which can be attributed to the fact that Spsf carries 
rich phenological spectral information over the whole growing period of 
PaWs as well as extensive spatial landscape information of PaWs. We 
found that the leafless period was the most effective in enhancing the 
spectral separability between PaWs and evergreen trees. The greenleaf 
period helped the most in distinguishing the PaWs from deciduous trees. 
Finally, we obtained the sub-meter PaWs distribution map in the Beijing 
Plain using the advanced DL model with high accuracy. The Spsf-based 
method facilitates the shaping of a new paradigm for sub-meter accurate 
mapping of urban tree species. The derived PaWs map can provide basic 
reference data for the relevant departments to monitor and manage the 
PWCs. 
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