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A B S T R A C T

Invasive Spartina alterniflora (S. alterniflora), a native riparian species in the U.S. Gulf of Mexico, has led to
serious degradation to the ecosystem and biodiversity as well as economic losses since it was introduced to China
in 1979. Although multi-temporal remote sensing offers unique capability to monitor S. alterniflora over large
areas and long time periods, three major hurdle exist: (1) in the coastal zone where S. alterniflora occupies,
frequent cloud coverage reduces the number of available images that can be used; (2) prominent spectral var-
iations exist within the S. alterniflora due to phonological variations; (3) poor spectral separability between S.
alterniflora and its co-dominant native species is often presented in the territories where S. alterniflora intruded
in. To articulate these questions, we proposed a new pixel-based phenological feature composite method (Ppf-
CM) based on Google Earth Engine. The Ppf-CM method was brainstormed to battle the aforementioned three
hurdles as the basic unit for extracting phonological feature is individual pixel in lieu of an entire image scene.
With the Ppf-CM-derived phenological feature as inputs, we took a step further to investigate the performance of
the latest deep learning method as opposed to that of the conventional support vector machine (SVM); Lastly, we
strive to understand how S. alterniflora has changed its spatial distribution in the Beibu Gulf of China from 1995
to 2017. As a result, we found (1) the developed Ppf-CM method can mitigate the phonological variation and
augment the spectral separability between S. alterniflora and the background species regardless of the significant
cloud coverage in the study area; (2) deep learning, compared to SVM, presented better potentials for in-
corporating the new phenological features generated from the Ppf-CM method; and (3) for the first time, we
discovered a S. alterniflora invasion outbreak occurred during 1996–2001.

1. Introduction

1.1. Background

Invasive plants pose serious threats to biodiversity and environ-
mental health by interfering with indigenous vegetation community,
animal habitats, soil properties, water quality, and biogeochemical
cycles (Dukes and Mooney, 2004; Hartig et al., 2002; Vitousek et al.,
1997). Spartina alterniflora (S. alterniflora) is native plant species in the

Gulf of Mexico but has been deemed to be invasive species in other
countries where it was introduced to (Callaway and Josselyn, 1992; Lu
and Zhang, 2013). Among the countries that S. alterniflora has intruded,
China turns out creating the severest impacts to local environments
(Qiu, 2013). S. alterniflora was first introduced to China in 1979 from
the United States for the primary sake of reducing soil erosions (Li and
Zhang, 2008). Since then, it has caused serious damages to the natural
environment and ecosystem, such as water and soil pollution, threa-
tening the biodiversity, and causing economic losses (Wan et al., 2009).
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With the elevated human activities in coastal zones, the harms of S.
alterniflora are becoming more and more obvious and aggravated
(Zhang et al., 2019). However, due to various logistical reasons, limited
knowledge regarding the S. alterniflora invasion has been gained as of
today (Liu et al., 2018). Consequently, no much attention from national
and local conservation agencies has been paid to S. alterniflora in China.
In order to develop cost-effective management strategies, monitoring
the dynamics of S. alterniflora is urgently needed.

Given the fact that S. alterniflora often disperse quickly and occupy
spatially-fragmented areas, it is challenging to use field methods to
keep track of its invasion (Ren et al., 2019). Alternatively, remote
sensing offers unique capability to monitor S. alterniflora over large
areas and long time periods by acquiring the multi-temporal image
acquisition from remote platforms such as satellites. In general, the
following two groups of methods have been developed with regards to
the intrinsic spatial resolution of the images that was adopted: high
spatial resolution (finer than 10 m) and moderate spatial resolution
(10–500 m).

Regarding the first category of methods (high resolution), different
attempts have been made such as airborne multispectral/hyperspectral
image (Beland et al., 2016; Chust et al., 2008; Hladik et al., 2013; Wang
et al., 2007), SPOT-5 and Gaofen-1 (Liu et al., 2017), ZiYuan-3 and
Gaofen-1 (Tao et al., 2017), unmanned aerial vehicle (UAV) image
(Wan et al., 2014), and SPOT-6 (Wang et al., 2015). Regardless of
various success of using such high spatial resolution images, the in-
dispensable obstacle for applying such methods to understanding re-
gional scales invasion are two facets: (1) limited spatial-temporal cov-
erage; (2) high costs. Alternatively, the second category of method
(moderate resolution), owing to its superior data accessibility, has
greater potential to articulate the regional scale invasion problem. Al-
though a handful studies have been carried out (Ai et al., 2016; He
et al., 2010; Lu and Zhang, 2013; Ouyang et al., 2013; Ramsey et al.,
2014; Wang et al., 2015), their mapping accuracy is still not satisfactory
due to two major hurdles: (1) the costal zones where S. alterniflora
usually intruded is inevitably annoyed by the significant coverage of
cloud, which subsequently reduces the number of images that can be
used; (2) poor spectral separability between S. alterniflora and its co-
dominant native species is presented. Consequently, how to augment
such spectral separability to refine the mapping accuracy is an im-
mediate question.

1.2. Phenological features

Incorporating phenological features derived from multi-temporal
remote sensing has found to be effective for augmenting the spectral
separability between invasive species and other co-existent native
species (Bradley, 2014; Diao and Wang, 2018; Evangelista et al., 2009;
Follstad Shah et al., 2007; Hansen et al., 2014; Hufkens et al., 2012;
Peterson, 2007; Rapinel et al., 2015; Singh and Glenn, 2009). To this
end, two different strategies for incorporating phenological features
have been reported in the past.

(1) Scene-based methods: i.e. the basic unit for compositing phe-
nological features is entire scene given the premise the scene is mostly
cloud-free. Therefore, often time a limited number of scenes can be
selected from all the avaiable multi-temporal images covering the study
site. Those scenes not qualified are mainly because their cloud coverage
is over a certain pre-defined threshold. As the latest development in the
scene-based methods, Diao and Wang (2016) proposed an intra-annual
phenological trajectory method drawn from time series of monthly
Landsat images. They found that utilization of time-series of intra-an-
nual data is more robust than a single image acquired at a particular
phenological stage, e.g. senescence. Although the scene-based methods
managed to succeed in some study sites, there are still two major ob-
stacles: (1) spatial variability of phenology can be quite remarkable for
the same invasive species within a scene (Fisher et al., 2006; Friedman
et al., 2005; Ji and Wang, 2016). For example, Ji and Wang (2016)

showed that significant phenological differences can be observed
among the same invasive species pixels even within spatial vicinity.
This leads to the first obstacle for the scene-based methods: spatial
variability of phenology has to be accounted for before a meaningful
scene-based phenological feature can be developed; (2) the second
obstacle is scene-based methods, because of its basic unit being the
entire scene, tend to yield limited cloud-free images. This is particularly
true for study area in the coastal zone, where cloud coverage is phe-
nomenal for the year long. Therefore, it is often impossible to derive
useful phenological features in coastal zones with insufficiently selected
image scenes.

(2) Pixel-based methods. Differed from scene-based method, the
second strategy to incorporate phenological feature is named as pixel-
based methods. In this case, the basic unit for compositing phenological
features is an individual pixel given the premise that the pixel is mostly
cloud-free among all the scenes available in a study site (Beckschäfer,
2017). In contrast to the scene-based methods that the entire scene will
be bailed out should the image contains significant cloud coverage,
cloud-free pixels within cloud-contaminated scenes can be still selected
based on which meaningful phenological features for invasive species
can be extracted. Consequently, pixel-based methods provide a viable
solution to solve the two aforementioned obstacles associated with the
scene-based methods (Griffiths et al., 2013; Roy et al., 2009; Lück and
van Niekerk, 2016): (1) pixel-based methods can mitigate the spatial
variability problems as the basic unit to account for phenology is in-
dividual pixel; (2) phenology of invasive species can be better char-
acterized regardless of cloud-coverage at the scene level. This is because
all cloud-free pixels in time-series images are employed. Despite the
conceptual merit over the scene-based methods, pixel-based methods
confront a practical challenge, i.e. one scene is literally composed of
enormous number of pixels. Thus, selecting viable pixels from this huge
pool of candidates over a long temporal dimension demands massive
data processing and unprecedented computing resources, which cannot
be afforded through traditional stand-alone remote sensing facility.

Google Earth Engine (GEE), as an emerging public high-perfor-
mance cloud-based platform, opens up a new revenue to overcome this
challenge (Gorelick et al., 2017). Recent studies have shown its po-
tential for advancing our scientific understanding of various dynamic
processes associated with earth systems (Hansen et al., 2013; Healey
et al., 2018; Huang et al., 2017; Liu et al., 2018; Nijland et al., 2019;
Schug et al., 2018). To our knowledge, pixel-based methods to in-
corporate phenology information with GEE are still limited (Azzari and
Lobell, 2017; Massey et al., 2018). Towards this line, Azzari and Lobell
(2017) proposed a season-based pixel composite method in GEE, which
selected the median values of each Landsat image band and vegetation
indices for each season during a four-year span. Although the method
achieved a promising accuracy for cropland monitoring, it will have a
hard time to be adapted for the study of invasive species, such as S.
alterniflora attributed to the following two rationales: (1) the assump-
tion of no areal changes within four years is not valid for invasive
species; (2) seasonal difference is not fine enough in the temporal di-
mension for capturing invasive species.

1.3. Classifier

Although the pixel-based phenological feature may augment the
spectral separability between invasive and native species, another
contributing factor affecting S. alterniflora mapping is the development
of an effective classifier. Currently, most mainstream classifiers in re-
mote sensing applications are based on machine learning (Mather and
Paul, 2009). Artificial intelligence (AI) was initially proposed in 1956
for the purpose of constructing a machine to mimic human thinking.
Machine learning emerged in the 1980s to implement AI algorithms.
Deep learning, as a new branch of machine learning, has achieved
successful applications in various fields since 2012, e.g. computer vi-
sion, speech recognition, and remote sensing classification (LeCun
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et al., 2015; Zhang et al., 2016). A growing number of studies to date
(e.g. Heydari and Mountrakis, 2018; Ishii et al., 2015; Li et al., 2016)
have been reported on classification of remote sensing images at
moderate spatial resolution with deep learning. For example, deep
learning method (Stacked AutoEncoder, SAE) and traditional machine
learning methods (e.g. Support Vector Machine, SVM) were compared
to map African land-cover (Li et al., 2016). It was reported that SAE
achieved a higher classification accuracy than SVM. However, in one of
the latest developments, Heydari and Mountrakis (2018) conducted an
experiment on land cover classification using the deep learning method
(SAE) with 26 Landsat images. Surprisingly, the results indicated that
the classification accuracy of deep learning was not as good as tradi-
tional machine learning methods, e.g. SVM. Therefore, it is still a well-
worthy topic to investigate which kind of methods is better, deep
learning or other alternatives. Nevertheless, one hypothesis we aim to
test in this study is that whether inclusion of domain knowledge (e.g.
phenological features) may play a role in the performance of deep
learning or other machine learning methods for the detection of in-
vasive S. alterniflora.

1.4. Objectives

The objectives of this study were to: (1) develop a new pixel-based
phenological feature composite method (Ppf-CM) based on GEE with
aims to minimize the cloud effects in the coastal zone; (2) investigate if
the performance of the deep learning method can be enhanced with the
proposed new pixel-based phenological feature; (3) understand how S.
alterniflora has changed its spatial distribution in the Beibu Gulf of
China from 1995 to 2017. As a whole, we expect that Ppf-CM can not
only account for the spatial variability of phenology and thus enhance
the spectral separability in S. alterniflora detection, but also maximize
the use of the available Landsat data in the frequently-cloud-covered
coastal zone. Moreover, we aim to investigate the full potentials in
phenological knowledge-driven deep learning methods. Finally, the
expected long-term and regional-scale S. alterniflora maps will serve as
the intrinsic baseline data for the assessment, management, and con-
servation of ecosystem services in coastal zones, including biological
invasion, biodiversity richness, climate change, and carbon storage.

2. Study site and data

2.1. Study area

The Beibu Gulf, located in the northwest of South China Sea, is a
semi-enclosed strait surrounded by Hainan island, Leizhou Peninsula,
Guangxi Zhuang Autonomous Region and Vietnam (18°47′N to 21°56′N
and 107°49′E to 110°26′E). Due to the typical southern subtropical
monsoon climate, the Beibu Gulf has a climate characterized by fre-
quent cloudy and rainy days with a mean annual temperature of 22 °C
and precipitation of 1600 mm. The Beibu Gulf is also characterized by a
mean tidal range of 2.24 m (Jia et al., 2015). The dominant vegetation
species in the intertidal zone of the Beibu Gulf consist mainly of S. al-
terniflora and four mangrove species: Avicennia marina, Aegiceras cor-
niculatum, Rhizophora stylosa, and Kandelia candel (Tian et al., 2017).

2.2. Datasets

2.2.1. Landsat imagery
All the USGS Surface Reflectance (SR) images from the Landsat-5

TM and Landsat-8 OLI covering the study site at the spatial resolution of
30 m and temporal resolution of 16-days in GEE from January 1, 1995
to December 31, 2017 were employed as input data. Through carefully
scrutinizing field observations and very high spatial resolution (VHR)
images, we found that the expansion of S. alterniflora within Frames 3
and 4 (Fig. 1) was negligible. Therefore, only the Landsat images lo-
cated within Frames 1 and 2 (Fig. 1) were used to map and monitor S.

alterniflora (420 Landsat-5 TM and 105 Landsat-8 OLI, 19.96 billion
pixels). For each Landsat image, six spectral features/bands were em-
ployed, including blue, green, red, near infrared (NIR), short-wave in-
frared 1 (SWIR 1), and short-wave infrared 2 (SWIR 2).

The number of cloud-free and low-tide Landsat images really in this
study site is quite limited, as can be seen from the GEE app that we
developed for exploring Landsat-8 OLI images: https://kingyan988.
users.earthengine.app/view/myapp. We consider an image to be “low-
tide” if all the intertidal vegetation (e.g. mangroves and S. alterniflora)
were not submerged by water (Jia et al., 2019). Taking Frame 2 (see
Fig. 1) in 2016–2017 as an example, only one cloud-free and low-tide
Landsat image (acquired on September 16, 2016) was found. This si-
tuation became even worse in some other years, especially when taking
Frame 1 into account.

To alleviate the problem caused by cloud and tide, Ppf-CM used
each cloud-free and low-tide pixel selected from all Landsat scenes
during a two-year period to generate a composite image in each specific
mapping year (see first column in Table 1), assuming that the extent of
S. alterniflora remained unchanged during this period. For example, to
construct the composite image in the mapping year of 2016–2017, we
will leverage all the Landsat images from January 1, 2016 to December
31, 2017 in the proposed Ppf-CM. According to our extensive field
studies, we selected two years as a trade-off between building a cloud-
free and low-tide Landsat composite image and detecting the coverage
change of S. alterniflora.

2.2.2. Coastal boundary zone
As S. alterniflora is typically distributed in the intertidal areas, a

coastal boundary zone covering those areas was digitized in GEE by
visually interpreting Landsat images from 1994 to 1995. Moreover, the
boundary was expanded by a 30-m radius buffer (the size of one
Landsat pixel) to make sure that S. alterniflora were all included. It
should be noted that the intertidal area has been getting smaller from
1995 to 2017 due to the expansion of coastal constructions. Therefore,
the above-mentioned boundary zone was applied to the other mapping
years (see the first column of Table 1) as well. All data analyses de-
scribed in this study were for this area. For each year, the intertidal
zone contains about 443,616 Landsat pixels. This zone is attached in the
GEE code (see Section 3.1).

2.2.3. Reference data
To collect the reference data of the two mapping classes (S. alter-

niflora and Non-S. alterniflora), we conducted field surveys in summer
and winter of each year from 2015 to 2018 and visually interpreted
VHR images of multiple sources ranging from 2006 to 2017. Non-S.
alterniflora class mainly contained mangroves, mudflats, water, and few
others (e.g. impervious surface). The VHR image data included UAV
images, SPOT and WorldView series images, and Google Earth VHR
data, all of which have a spatial resolution finer than 10 m. As shown in
Table 1, a rather comprehensive VHR data set was employed to con-
struct the reference data set to help us identify the S. alterniflora pixels
in the Landsat images from 2006 to 2017. Particularly, the coverage
proportion of VHR data reached 76% in the mapping year of
2016–2017. The number of available VHR images, however, was very
limited before 2003. For those mapping years (1994–1995, 1996–1997,
1998–1999, 2000–2001, and 2002–2003), besides two scenes of SPOT
4 images, we also visually interpreted the Landsat images to collect the
reference data.

The reference data were randomly sampled following the principles
that they were as evenly distributed as possible throughout the study
area and were constructed in such a way that the number of S. alter-
niflora and Non-S. alterniflora (mangroves, mudflats, water, and others)
pixels were comparable. Moreover, we make sure that the reference
data covered at least 2.2% (about 10,000 Landsat pixels) of the whole
study area for any given year. In each year, the reference data were split
for tranining (about 60%, or 6000 Landsat pixels) and accuracy
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assessment (about 40%, or 4000 Landsat pixels).

3. Methods

We analyzed the S. alterniflora invasion through three steps. First,
we constructed composite images of different phenological stages using
the proposed Ppf-CM. For comparison purposes, we also constructed
five other types of Landsat images. More details can be found in Section
3.1. In addition, to assess the effectivity of the proposed Ppf-CM, we
compared Ppf-CM image with the other five types of images by com-
paring their intra-class and inter-class variance. More details can be
found in Section 3.2. Second, we input each types of image to the
classifier to map S. alterniflora in 10 different mapping years. Two
classifiers SAE and SVM are employed and compared. More details can
be found in Section 3.3. Third, the area of S. alterniflora derived from
the classifiers are compared across the 10 mapping years to analyze its

change over time.

3.1. Pixel-based phenological features composite method

As shown in Fig. 2, our proposed Ppf-CM can be divided into three
stages: First, the cloud, cloud shadow, and water pixels in the Landsat
Surface Reflectance (SR) images were masked by the C Function of
Mask (CFMask) method (see Section 3.1.1). Second, two key phenolo-
gical periods (green and senescence) of S. alterniflora were identified by
analyzing the pixel-level Normalized Difference Vegetation Index
(NDVI) temporal profiles (see Section 3.1.2). Third, a green composite
image in the green period and a senescence composite image in the
senescence period were constructed, each containing 6 spectral bands.
The two composite images were then combined to yield a new image
(Ppf-CM based image, 12 bands) (see Section 3.1.3). The method can be
reproduced with the following GEE code URL in the mapping year of

Fig. 1. Location of the study site. Each blue square box represents the coverage of a Landsat image. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Landsat images, high spatial resolution data and field survey description during 1995–2017 over Frame 1 and 2 in the Beibu Gulf. Coverage proportion is defined as
the total area of high spatial resolution data and field survey data divided by the whole study site area.

Year Temporal coverage of
Landsat 5 & 8

Description of high spatial resolution data and field survey boundaries Coverage proportion (%)

2016–2017 01/01/16–12/31/17 Pleiades 2, WorldView 3, UAV images, Google Earth VHR data, and field measurement boundaries About 76
2013–2014 04/11/13–12/31/14 GeoEye-1, WorldView 2, SPOT 6, Google Earth VHR data About 43
2010–2011 01/01/10–12/31/11 QuickBird, WorldView 1, SPOT 4, Google Earth VHR data About 47
2007–2008 01/01/07–12/31/08 GeoEye-1, SPOT 4, Google Earth VHR data About 33
2005–2006 01/01/05–12/31/06 SPOT 4, QuickBird, Google Earth VHR data About 31
2002–2003 01/01/02–12/31/03 SPOT 4 About 11
2000–2001 01/01/00–12/31/01 SPOT 4 About 11
1998–1999 01/01/98–12/31/99 × 0
1996–1997 01/01/96–12/31/97 × 0
1994–1995 01/01/94–12/31/95 × 0
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2016–2017:
https://code.earthengine.google.com/

f774daa078b73e2c17121279cc4572a1.

3.1.1. Cloud, cloud shadow, and water masking
The preprocessing of Landsat SR images includes two major steps:

first, all the cloud, cloud shadow, and water pixels were masked by the
“pixel_qa” band provided in the Landsat SR images, by excluding pixels
with flags in “pixel_qa” bits 2, 3, and 5. The “pixel_qa” band contains
pixel quality attributes generated from the CFMask algorithm (Foga
et al., 2017), with each bit representing one type of pixel quality (e.g.
bit 2: water, bit 3: cloud shadow, bit 5: cloud). Second, considering that
CFMask cannot filter all cloud and cloud shadow pixels, especially
when the cloud coverage proportion is high, we also excluded Landsat
images where cloud and cloud shadow (pixel_qa bit 3 and 5 flagged)
covered>70% of the image within the specific coastal boundary zone.
The threshold was set to 70% in this work following the previous stu-
dies (Griffiths et al., 2013; Hermosilla et al., 2016; White et al., 2014).

3.1.2. S. alterniflora phenology analysis
To capture the optimal intra-annual phenological windows for S.

alterniflora detection, an average annual NDVI temporal profile was
generated to determine phenological features using all Landsat-8 OLI
images from January 1, 2014 to December 31, 2017 (Fig. 3), where
NDVI was computed by the formula: NDVI = (NIR - red)/(NIR + red)
(Tucker, 1979). As shown in Fig. 3, on each date the NDVI distribution
were calculated at the pixel level with 500 pure S. alterniflora Landsat
pixels evenly distributed throughout the whole study area, in which the
pixels were selected by using VHR remote sensing data visual inter-
pretation method and field measurement boundaries. The annual NDVI
temporal profile of S. alterniflora was similar to the results by (Ai et al.,
2017), thus confirming the reliability of our Landsat-based phenolo-
gical characteristics.

Fig. 3 shows that the mean NDVI values before day of year (DoY)
132 were all smaller than 0.3, whereas the mean NDVI values between
DoY 164 and 260 were much higher than 0.4. Therefore, we can

identify two clearly different phenological stages of S. alterniflora, i.e.
the senescence period from DoY 1 to 142 and the green period from
DoY 154 to 270. It should be noted that we expanded the time range of
the green period and the senescence period because the dates may vary
across different years during 1995–2011.

Through the observation of field measurements, it was found that
the spatial variability of phenology did exist in S. alterniflora, e.g.
prominent phenological differences can be observed for pixels be-
longing to the same invasive species across a specific-date image. For
example, as shown in Fig. 4, two stands of S. alterniflora were at rather
different phenological stages on the same date, associated with clearly
different spectral features. S. alterniflora distributed in Fig. 4(a) was
much greener than that of Fig. 4(b).

3.1.3. Green and senescence images composite method
From the two key phenological periods identified in Section 3.1.2,

i.e. green and senescence periods, we first generated two composite
Landsat images for each mapping year, namely one green composite
image and one senescence composite image. Through those composite
processes, the spatial variation in plant phenology can be smoothed.
The green composite image with six spectral bands was constructed
when Enhanced Vegetation Index (EVI) (Van Leeuwen and Huete,
1999) reached the maximum on a per-pixel basis during the green
period. Similarly, the senescence composite image was constructed
when Plant Senescence Reflectance Index (PSRI) reached maximum
during the senescence period. PSRI, ranging from −1 to 1, is a vege-
tation index which is sensitive to senescence-induced reflectance
changes (Merzlyak et al., 1999). An increase in PSRI represents the
increasing senescence of vegetation, where PSRI was calculated using
the formula: PSRI = (ρ680nm − ρ500nm) / ρ750nm, in which ρ stands for
the spectral reflectance. Replacing the ρ680nm, ρ500nm, and ρ750nm re-
spectively with red, blue, and NIR bands in Landsat, the formula of PSRI
becomes: PSRI = (red - blue)/NIR in this work. Although the red, blue,
and NIR bands of Landsat imagery have wider spectral band widths, the
reflectance of S. alterniflora in the three Landsat bands resembles those
at the three specific wavelengths (Fig. 5), which suggested that the

Fig. 2. Flowchart of the proposed Ppf-CM in a specific mapping year.
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revised PSRI can effectively represent the senescence of vegetation.
Further, we created a new composite image (i.e. Ppf-CM based image)
containing 12 spectral bands through stacking the green composite
image (6 bands) and the senescence composite image (6 bands).

Besides the Ppf-CM based image, we also constructed other relevant
Landsat images (i.e. three scene-based and two pixel-based images)
through leveraging the phenological information for comparison pur-
poses (Table 2). These various scenarios represent the common means
to capture phenological characteristics in remote identification of plant
species. The definition of each constructed image can be found in
Table 2.

3.2. Intra-class variability and inter-class separability evaluation

Intra-class variability and inter-class spectral separability are the
key factors in determining the detection accuracy of S. alterniflora. A
comparative experiment was conducted between Ppf-CM and five other
types of Landsat images, including SI, GI, GSI, SCI, and GCI (see
Table 2). The six types of Landsat images were constructed in
2005–2006, 2007–2008, 2010–2011, 2013–2014, and 2016–2017 (see
the top five rows of Table 1). Those mapping years were chosen for
conducting the comparative experiment because the coverage propor-
tion of the reference data were high (> 31%). Parts of the testing data
(about 50%) were chosen by using a random selection method (“ran-
domColumn” function provided in GEE) for evaluation, including S.
alterniflora and Non-S. alterniflora (mangroves and mudflats). Man-
groves and mudflats in the Non-S. alterniflora class were chosen because

they are difficult to distinguish from the S. alterniflora and they occupy
most of the area besides S. alterniflora within the coastal boundary zone.

The Standard Deviation (SD) of S. alterniflora, mangrove, and
mudflat were the first statistic to assess its intra-class variability.
Smaller SD means smaller intra-class variance, which is better for
classification (Dalponte et al., 2009; Shao et al., 2016). Second, the
Jeffries-Matusita (J-M) distance, as a widely recognized spectral se-
parability metric (Tolpekin and Stein, 2009), was employed to quantify
the respective spectral separability between S. alterniflora and man-
grove, mudflat. J-M distance is asymptotic to the value of 2.0 with in-
creasing spectral separability, with larger J-M distance representing
larger inter-class distance between S. alterniflora and others, which is
better for classification (Schmidt and Skidmore, 2003). Both SD and J-
M values were calculated by the ENVI 5.1.

3.3. Classifier selection and parameterization

Besides the procedure applied to generate the composite image, the
classifier selection is another key factor in determining the detection
accuracy of S. alterniflora. As a deep learning model, SAE was chosen as
the classifier in this work because it has been successfully applied on
Landsat image classification in several studies (Heydari and
Mountrakis, 2018; Li et al., 2016). In addition, SVM, a traditional
machine learning method, was also selected considering the compar-
ison results of different classifiers in He et al. (2015) and Heydari and
Mountrakis (2018). The detailed description of the two algorithms can
be found in literature, for example (Chen et al., 2014; Vincent et al.,

Fig. 3. NDVI temporal profile on each Day of Year (DoY). SD: Standard Deviation.

Fig. 4. Two S. alterniflora stands showing very different phenological features at two close locations in the Dandou Sea on the same day (January 15, 2018).
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2010) for SAE, and (Foody and Mathur, 2004; Mountrakis et al., 2011)
for SVM. SAE was implemented in Matlab 2016a with the toolbox of
‘DeepLearnToolbox-master’, while SVM was implemented on GEE and
the code can be found in the URL mentioned in Section 3.1.

The parameter setting method of SVM in this study was done ac-
cording to the sensitivity analysis method in (Heydari and Mountrakis,
2018). The “kernelType” was set to “RBF” (Gaussian function). For the
“gamma” parameter in the RBF kernel, we tested values of 0.01, 0.1,
0.5, 1, 2, 5, 10, 25, 50, 100, and 300. For the “cost” parameter in SVM,
we tested values of 0.1, 0.5, 1, 2, 5, 10, 25, and 50. We randomly se-
lected 50% reference data for parameter optimization. By selecting the
highest overall accuracy achieved from different parameter combina-
tions, this study set “gamma” and “cost” to 2 and 10 respectively.

The SAE parameter setting for classification of multi-spectral images
was described by several authors, e.g. (Heydari and Mountrakis, 2018),
but the room for improvements remains significant, especially for the
selection of the optimal number of iterations. For example, Heydari and
Mountrakis (2018) set the iteration number 100 without further ana-
lysis. It should be noted that 100 iterations may not be sufficient to
obtain a stable classification, at least in this work. Therefore, we set a
large maximum number of iterations (10,000) with the optimal number
of iterations determined by the criteria of model performance. We ap-
plied two criteria to estimate the optimal number of iterations, i.e. the
mean error and the number of misclassified pixels. In the training data
set (see Section 2.2.3), we labeled S. alterniflora and Non-S. alterniflora
pixels with 1 and 0, respectively. The mean error is the mean difference
between predicted values derived from SAE and labeled values. In
contrast, the numbers of misclassified points are the sum of S. alterni-
flora misclassified as Non-S. alterniflora and Non-S. alterniflora mis-
classified as S. alterniflora. The optimal number of iterations should
yield both a low mean error and few misclassified pixels. In the example
(the mapping year in 2016–2017) shown here (Fig. 6), the optimal
number of iteration should be located in the red circle, which has

almost the smallest mean error and smallest number of misclassified
pixels simultaneously. Other SAE key parameter values or range applied
in this study are given in Table 3.

4. Results

4.1. Intra-class variability and inter-class separability statistics

Fig. 7 shows the SD of S. alterniflora reflectance. From the single-
date images (GI and SI) to the composite images (GCI and SCI), the SD
in each spectral band decreased. This was true in each mapping year.
This indicates that the bands in composite images have successfully
mitigated the intra-class variability in spectral reflectance. This com-
parison was also applied to the mangroves and mudflats (see Table S1),
which achieved consistent results with S. alterniflora.

Fig. 8 shows spectral separability statistics between S. alterniflora
and mangrove, mudflat for the six types of Landsat images. For S. al-
terniflora and mangroves, both GI and GCI acquired in the green periods
yielded consistently low J-M values (ranging from 0.93 to 1.12),
whereas both SI and SCI acquired in the senescence periods got higher
J-M values (from 1.18 to 1.37) than GI and GCI. Compared to statistics
in the green periods (GI and GCI), the increased spectral separability
using senescence images (SI and SCI) indicated that the senescence
periods are more suitable for distinguishing S. alterniflora from man-
groves. Conversely, for S. alterniflora and mudflats, the GI and GCI
achieving a higher J-M values than SI and SCI indicated that the green
periods are more suitable for distinguishing S. alterniflora from mud-
flats. Upon further comparison, both GSI and Ppf-CM achieved much
higher J-M values (ranging from 1.46 to 1.81) than the other four types
of Landsat images. This confirms that the combination of two images
acquired at the two distinctive phenological stages increases the inter-
class distance, hence enhancing the spectral separability between S.
alterniflora and mangroves, mudflats. As a whole, Ppf-CM achieved the

Fig. 5. The mean reflectance of S. alterniflora in green
period (May 31, 2017) and senescence period (January 15,
2018). Each spectral line was the mean value of ten spectral
curves. The blue, red, and NIR band widths of Landsat 8 are
450–515 nm, 630–680 nm, and 845–855 nm, respectively.
(For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this ar-
ticle.)

Table 2
The definitions of the six different types of Landsat images.

Type of image Abbreviation Type of method Description

Green image GI Scene-based An entire scene acquired in the green period with the least cloud-coverage and low-tide.
Senescence image SI Scene-based An entire scene acquired in the senescence period with the least cloud-coverage and low-tide.
Combination of GI and SI GSI Scene-based The combination of the green and senescence images.
Green composite image GCI Pixel-based Each pixel in this image contains six spectral bands when maximum EVI was attained.
Senescence composite image SCI Pixel-based Each pixel in this image contains six spectral bands when maximum PSRI was attained.
Combination of GCI and SCI GSCI

(Ppf-CM)
Pixel-based The combination of the green composite image and the senescence composite image.
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highest J-M value (ranging from 1.69 to 1.81) among the six types of
Landsat images.

4.2. Classification performance assessment

A comparison experiment was carried out to evaluate the perfor-
mance of SAE and SVM, and to choose an optimal strategy to map S.
alterniflora. The six types of Landsat images (Table 2) in the ten dif-
ferent mapping years (Table 1) served as input of these two classifiers.
The results were evaluated with four different metrics: Producer's Ac-
curacy (PA), User's Accuracy (UA), Overall Accuracy (OA), and Kappa
Statistic (KS). The classification performance was rather similar for
each type of Landsat images in different mapping years from 1995 to
2017. The spatial coverage of the reference data was much higher in
2016–2017 than that in the other years. Accordingly, we focused our
analysis on the results obtained for 2016–2017 (Table 4). The OA and
KS statistic results in the remaining nine mapping years were shown in
Table 5 and S2. The comparison results show that the classification
accuracy was improved in three aspects.

(1) Combining two phenological stages improved the accuracy.
Table 4 shows that using the two phenological stages composite images
(i.e. GSI and Ppf-CM), higher classification accuracies were achieved
than using the single phenological stage images (i.e. GI, GCI, SI, and

SCI) (Table 4). Taking 2016–2017 as an example, the OA improved
from 82.55%~90.89% to 93.84%~96.22%; the KS improved from 0.54
to 0.75 to 0.84–0.90.

(2) Pixel-based composition improved the accuracy. Table 4 shows
that using the composite images (i.e. SCI, GCI, and Ppf-CM), higher
classification accuracy was achieved than using entire-scene images
(i.e. SI, GI, and GSI). Taking mapping year 2016–2017 as an example,
the OA improved from 82.55%~94.77% to 83.30%~96.22%; KS im-
proved from 0.54 to 0.86 to 0.55–0.90.

(3) Integrating phenological features of the two distinctive stages
improved the performance of SAE more than that of SVM. As shown in
Table 4, although SAE and SVM performed similarly when using data
from only one phenological stage (i.e. GI, GCI, SI, and SCI), SAE
achieved higher accuracy than SVM when combining data from two
phenological stages (i.e. GSI and Ppf-CM). Taking the mapping year
2016–2017 as an example, for SVM, the OA and KS increased by 4.28%
~11.57% and 0.12–0.31, respectively; for SAE, the OA and KS in-
creased by 5.33%~12.92% and 0.15–0.35, respectively.

Besides the mapping year in 2016–2017, the same conclusion can be
drawn in the other mapping years as well (Table S2). Moreover, Table 4
also shows that SAE with Ppf-CM based composite image achieved the
highest accuracy among all classification procedures, where the values
of OA and KS were 96.22% and 0.90, respectively. Moreover, the OA
and KA of the nine other mapping years achieved consistently higher
values for SAE with Ppf-CM (Table 5 and S2). Therefore, SAE with Ppf-
CM will be applied as the optimal procedure to derive S. alterniflora
maps in the Beibu Gulf in the ten mapping years (see the first row in
Table 1).

4.3. Multi-year spatial dynamics of S. alterniflora

The distribution of S. alterniflora in the Beibu Gulf was mapped with
Ppf-CM based SAE in the ten mapping years during 1995–2017.
Keyhole Markup Language (KML) format files of these mapping results

Fig. 6. Mean error and number of misclassified points to estimate the optimal number of iterations in SAE, in which the number in colour bar stands for the density of
points.

Table 3
The key parameter values/range setting of SAE classifier.

Parameter Parameter value/
range

Parameter in this work

# of nodes in 1st hidden layer 6 to 60 (step of 6) 36
# of nodes in 2nd hidden layer 0 to 60 (step of 6) 36
# of nodes in 3rd hidden layer 0 to 60 (step of 6) 0
Batch size 10 to 100 (step of 10) 10
# of iterations 10,000 7132–9756
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were loaded into Google Earth. Fig. 9 shows the S. alterniflora dis-
tribution in the Beibu Gulf in the mapping year of 2016–2017. In ad-
dition, Fig. S1, a partial zoom in figure in R1 (Fig. 9), was employed to
show how difficult it is to detect S. alterniflora. Although the distribu-
tions of S. alterniflora are very dense and relatively easy to classify than
some other geographic locations, we cannot easily identify them by
visual interpretation in the two Landsat images. In the mapping year of
2016–2017, S. alterniflora covered a total area of 1365 ha. The highest
spatial coverage of S. alterniflora in the Beibu Gulf was in Guangxi
Province, particularly in the Dandou Sea (R1, 539 ha) and Lianzhou Bay
(R2, 291 ha) (Fig. 9). The number of patches (i.e. groups of connected S.
alterniflora pixels) was 478. The average and maximum area of all the
patches were 2.9 ha and 83 ha, respectively. Ever since it was in-
tentionally introduced in China from 1979, the area of S. alterniflora has
increased from about 1 ha to 1365 ha. From 1979 to 2017, the invasion
speed of S. alterniflora was very high, with severe impacts on ecosys-
tems and biodiversity.

Fig. 10 shows the area and Compound Annual Growth Rate (CAGR)
(Taubenböck et al., 2014) of S. alterniflora from 1979 to 2017 in the
Beibu Gulf. A very small area growth (i.e. from 1 ha to 2 ha) occurred
within such a long period during 1979–1995, while the area of S. al-
terniflora began to increase rapidly from 1996 to 2001 (i.e. from 2 ha to
84 ha) with high CAGR values during this period. The rapid increase
indicated the outbreak time of S. alterniflora, particularly in 1996–1997,
with CAGR as high as 112%. From 2002 to 2017, the area increased at a
relatively low and stable CAGR (<30%), with an area coverage from
137 ha to 1365 ha. However, it should be noted that the area of S.
alterniflora kept growing at a very fast speed with about 82 ha per year.

The Dandou Sea (R1 in Fig. 9) is one of the main distribution regions
of S. alterniflora in the Beibu Gulf. Fig. 11 shows the R1 extents during
1995 to 2017. The area and CAGR of S. alterniflora had a similar trend
to that of the whole Beibu Gulf. As shown in Fig. 11, the diffusion
modes of S. alterniflora included both point-source and boundary-
source, in agreement with the reproduction through both seeds and
roots. In 2016–2017, S. alterniflora has almost covered the whole
mudflats where mangrove forests were not present. The results show
that the potential habitats of mangrove forests were seriously invaded
by S. alterniflora, which agrees with the field observations (Zhang et al.,
2012).

5. Discussion

In this paper, we developed a new composite method to extract
effective phenological feature at the pixel level (i.e. Ppf-CM) to monitor
invasive S. alterniflora dynamics from 1995 to 2017 in a cloudy coastal
zone, using 525 Landsat images in GEE. This study presents that: (1)
Ppf-CM not only accommodates the spatial phenology variability of S.
alterniflora as well as enhances the spectral separability, but also eases
the problems caused by the scarcity of cloud-free Landsat scenes; (2)
incorporation of the new phenological feature yielded from Ppf-CM as
input data can improve the performance of the deep learning classifier;
(3) This is the first time that invasion outbreak of the S. alterniflora was
discovered at the regional scale.

Besides the aforementioned successes, we expect that Ppf-CM in
GEE will advance the phenology-based composite image analysis to
detect various vegetation species, despite the severe cloud contamina-
tion in satellite images. In addition, as revealed by our attempt to in-
corporate phenological information in deep learning, we have wit-
nessed great potential for developing phenological knowledge based
deep learning methods. As a whole, the derived long-term and regional-
scale S. alterniflora maps will serve as the intrinsic baseline data for the
assessment, management, and conservation of ecosystem services in
coastal zones.

5.1. Phenological features (Ppf-CM)

The results revealed that Ppf-CM achieved the best performance in
the spectral separability statistics (Figs. 7-8), which can be attributed to
two factors: First, Ppf-CM minimizes the intra-class variability in
spectral reflectance by mitigating the spatial variability of phenology in
S. alterniflora. Second, Ppf-CM maximizes the inter-class distances be-
tween S. alterniflora and background by identifying and combining two
distinctive phenological features (i.e. GCI and SCI images). Particularly,
this study site extremely lacks cloudless Landsat images, which has
hindered S. alterniflora detection research in the past. The proposed Ppf-
CM performed excellently in cloud- minimizing by capturing the phe-
nological features at the pixel level.

5.1.1. Ppf-CM minimizes the intra-class variability
Ppf-CM minimizes the intra-class variability in spectral reflectance

by mitigating the spatial variability of phenology. Previous studies (e.g.

Fig. 7. The SD values of each band of single-date-image and composite-image in five different mapping years.
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Fisher et al., 2006; Friedman et al., 2005; Ji and Wang, 2016) have
shown that the spatial variability of phenology is nontrivial in invasive
species. For example, prominent phenological differences (i.e. green

and senescence periods) can be observed for pixels belonging to the
same invasive species across a specific-date Landsat image (Fig. 4). This
phenomenon results in large variability in the spectral reflectance of the
studied invasive species, i.e. intra-class variability. To address this
issue, as the latest development, Ji and Wang (2016) developed a pixel-
based method to estimate the timing of coloration across different
geographic locations in Landsat imagery with the help of the MODIS
End of Season-Time (EoST) product. However, this method was limited
by the accuracy of the EoST product and the discrepancies caused by
the different spatial resolution of MODIS and Landsat. In this study, in
lieu of inclusion of additional data (e.g. MODIS EoST product), our
proposed method (Ppf-CM) aims to borrow help from time series of
Landsat images. The essence of Ppf-CM is to generate a respective green
(maximum EVI) and senescence (maximum PSRI) composite image, in
which the phenological variability is largely ameliorated. As a result,
the intra-class variability for the invasive species is minimized.

Despite the merits of our developed Ppf-CM method, it has to be
noted that two limitations still exist. First, PSRI has difficulty in cap-
turing the senescence timing when cirrus cloud is present. Therefore, an
enhanced PSRI or a more robust cloud mask method should be devel-
oped to address this issue. Second, Ppf-CM cannot capture the green
and the senescence timing finer than 16 days due to the moderate
temporal resolution of Landsat image. To solve these problems, further
work based on temporally refined Landsat image is worthwhile to in-
vestigate (Hilker et al., 2009; Zhu et al., 2010). Alternatively, applying
Ppf-CM on Sentinel 2 imagery at the 5 days' revisit frequency can be
tested as well.

5.1.2. Ppf-CM maximizes the inter-class separability
Ppf-CM maximizes the inter-class distance by identifying and com-

bining the two distinctive phenological features in S. alterniflora de-
tection. Prior studies (e.g. Evangelista et al., 2009) have documented
the effectiveness of incorporating time-series images acquired at mul-
tiple phenological stages in improving spectral separability of invasive
species. However, these studies were scene-based methods which
shared two common problems: (a) the spatial variability of phenology
cannot be mitigated within an image scene; (b) selecting entire scenes
according to cloud coverage reduces the number of available images
sharply, which is a particularly prominent phenomenon in the cloudy
coastal zone. Problem (a) has been discussed in Section 5.1.1. Problem
(b) is a very challenging issue in this study site. As mentioned in Section
2.2.1, taking Frame 2 (see Fig. 1) in 2016–2017 as an example, there
was only one cloud-free and low-tide Landsat image (acquired on
September 16, 2016) available within the coastal boundary zone. This
situation became even worse in some other years, especially when
taking both Frame 1 and Frame 2 into account.

In this study, Ppf-CM identified and combined two distinctive phe-
nological features (i.e. green composite image and senescence

Fig. 8. J-M statistics of six types of Landsat images in five different mapping
years.

Table 4
S. alterniflora detection accuracy of different detection strategies with six types of Landsat images in 2016–2017.

Images types Two classifiers PA (%) UA (%) OA (%) KS

S. alterniflora Non-S. alterniflora S. alterniflora Non-S. alterniflora

GI SAE 64.00 88.96 66.67 87.74 82.55 0.54
SVM 63.80 89.12 67.00 88.00 82.63 0.54

SI SAE 79.71 90.61 74.54 92.83 87.81 0.69
SVM 80.49 90.00 74.00 93.00 87.56 0.68

GSI SAE 88.10 97.07 91.21 95.94 94.77 0.86
SVM 86.63 96.33 89.00 95.00 93.84 0.84

GCI SAE 63.71 90.07 68.88 87.79 83.30 0.55
SVM 64.00 90.37 69.64 87.91 83.60 0.56

SCI SAE 75.61 96.16 87.18 91.95 90.89 0.75
SVM 75.71 96.13 87.09 91.98 90.89 0.75

Ppf-CM (GSCI) SAE 88.68 98.82 96.29 96.20 96.22 0.90
SVM 85.66 98.45 95.02 95.21 95.17 0.87
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composite image) to better monitor S. alterniflora, which guided the
selection of the spectral data to be composited at the pixel level. In the
senescence period, mangrove forest and the other evergreen species are
much greener than S. alterniflora, making them easily distinguishable
(Ai et al., 2017). However, some mixed pixels of S. alterniflora are ex-
tremely difficult to distinguish from the mudflats (Chust et al., 2008). In
the green period, although S. alterniflora is hard to be distinguished
from the evergreen vegetation, it becomes easy to distinguish S. alter-
niflora from the mudflats (Ouyang et al., 2013). Therefore, the combi-
nation of green and senescence periods can improve the spectral se-
parability in S. alterniflora detection. Compared to scene-based
methods, Ppf-CM will optimize the use of each available pixel in
Landsat imagery, hence enlarging the amount of remote sensing data
for time-series analyses, which successfully addressed the issues of
lacking entire scene cloud-free remote sensing images. In addition, only
two phenological stages are employed in Ppf-CM rather than stacking
multiple phenological stages, reducing demands for the amount of data.
Moreover, the two specific stages theoretically accommodate most of
the effective phenological information and abandon the redundant
phenological information for S. alterniflora detection. As a result, the
inter-class separability between invasive species and others are max-
imized, notwithstanding the scarcity of entire cloud-free image scenes.

Although our proposed Ppf-CM in GEE is designed for S. alterniflora
detection, it should be beneficial to all phenology-based composite
image analysis, especially for long-term and large-scale mapping, with
an excellent performance in the aspect of cloud-minimizing. For the
next step, Ppf-CM can be expanded to detect various vegetation species,
by compositing spectral data from their corresponding phenological
features. For example, when applying Ppf-CM to map paddy rice, we
expect to find at least three dominant phenological stages: water

(sowing), green (emergence and full growth) and bare soil (harvest).
Capturing these three stages with spectral data should further enhance
the spectral separability between paddy rice and others.

5.2. Deep learning with Ppf-CM

This is the first study to our knowledge to investigate the pheno-
logical features in improving the performance of deep learning. As re-
vealed in our results, we have seen great potential in developing phe-
nological knowledge based deep learning methods. Recent literature
has documented the applications and benefits of deep learning, a new
branch of machine learning, in various fields (LeCun et al., 2015).
However, it is still a controversial topic whether deep learning is more
suitable than traditional machine learning methods for Landsat image
classification (Heydari and Mountrakis, 2018; Li et al., 2016). Never-
theless, this study aims to evaluate the hypotheses that applying phe-
nological knowledge as input data of deep learning can improve the
performance in the detection of invasive S. alterniflora. A comparison
experiment between SAE and SVM with six different types of Landsat
images was conducted (see Table 2). The best performance was
achieved with Ppf-CM based SAE method, suggesting SAE benefited
more than SVM from combining data in the two phenological stages
using Ppf-CM (Table 4). This was mainly because, compared to the
traditional machine learning method (SVM), deep learning method
(SAE) can easily capture and exploit more complex information with its
deep network structure and strong self-learning ability (Penatti et al.,
2015; Xie et al., 2015).

There exist some future works that are worth noting. First, only the
SAE model was employed in this study. It treats each pixel in Landsat
imagery as an individual input unit and neglects the spatial information

Table 5
Overall accuracy (%) of the six types of Landsat images in nine different mapping years with SAE and SVM.

Images types Two classifiers 2013–2014 2010–2011 2007–2008 2005–2006 2002–2003 2000–2001 1998–1999 1996–1997 1994–1995

GI SAE 82.24 82.17 85.64 84.87 91.19 92.56 97.42 97.93 99.46
SVM 81.96 82.58 85.78 84.83 91.18 92.47 97.56 98.39 99.49

SI SAE 90.03 90.25 89.46 89.10 94.25 94.17 98.09 98.79 99.66
SVM 90.16 90.28 89.56 88.83 94.28 94.02 97.99 98.56 99.63

GSI SAE 93.87 94.21 95.29 94.89 96.45 96.16 99.45 99.26 99.83
SVM 93.44 93.90 94.31 94.15 95.99 95.91 98.84 99.33 99.86

GCI SAE 84.66 84.91 87.34 87.34 92.78 93.39 97.43 98.56 99.59
SVM 84.36 84.68 87.47 87.31 92.76 93.59 97.85 98.66 99.56

SCI SAE 90.77 90.70 90.41 90.97 94.98 95.18 98.18 99.02 99.73
SVM 90.97 90.39 90.39 91.17 95.04 95.07 98.18 98.89 99.76

Ppf-CM (GSCI) SAE 96.10 95.46 96.18 97.21 98.59 98.18 99.58 99.70 99.93
SVM 95.55 95.10 96.03 96.75 97.96 97.74 99.27 99.53 99.93

Fig. 9. S. alterniflora distribution in the Beibu Gulf in the mapping year of 2016–2017.
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(Finn et al., 2016). Therefore, some other deep learning models (e.g.
Fully Convolutional Networks) that accommodates the relationship
between one pixel and its neighbors can be tested (Hu et al., 2015).
Second, we did not implement SAE on GEE in this study due to the

excessive programming efforts to migrate the codes. Fortunately, deep
learning methods will become easier to implement on GEE in the near
future because Google is trying to import AI models to GEE. Third, in
addition to phenological information, some other types of prior

Fig. 10. Area statistics results and CAGR of S. alterniflora during 1979–2017 in the Beibu Gulf, China.

Fig. 11. S. alterniflora distribution maps in the Dandou Sea (R1 in Fig. 9) from 1995 to 2017. The red pixel represents S. alterniflora, and the base map is a Pleiades
image (three-channel composite: red, green, blue) at a spatial resolution of 0.5 m acquired in November 2017.
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knowledge (e.g. spatial structure, spatial contexture, and texture)
should be considered as well to improve the performance of deep
learning.

5.3. Invasion outbreak of S. alterniflora

This is the first time that the invasion outbreak of the S. alterniflora
was discovered at the regional scale, which benefitted from the fol-
lowing three factors: (1) The proposed Ppf-CM eases the problems
caused by the scarcity of entire scene cloud-free Landsat scenes; (2) The
deep learning classifier optimizes the use of the phenological in-
formation yielded from Ppf-CM; (3) GEE provides an ideal platform for
handling massive amount of data required by the pixel-based method
(i.e. Ppf-CM) with its powerful data storage and high computational
capacity.

Prior studies (Beland et al., 2016; Ramsey et al., 2014; Rosso et al.,
2006; Wang et al., 2015; Liu et al., 2017) have successfully employed
remote sensing techniques to monitor the S. alterniflora dynamics.
However, these studies were limited by the spatial or temporal cov-
erage due to the available remote sensing data imagery. In this study,
we derived S. alterniflora maps during 1995–2017 in the Beibu Gulf,
China. This long-term regional-scale dataset can serve as the intrinsic
baseline data for the assessment, management, and conservation of
ecosystem services in coastal zones.

The invasion outbreak time of S. alterniflora in the Beibu Gulf, China
was found to be during 1996–2001 (Fig. 10) from 1979 to 2017. This
finding is close to but earlier than the conclusion drawn by local forest
agencies through long-term observations at a local site in the Dandou
Sea. The difference can be attributed to two key reasons: First, the scope
of human eyes is limited by the terrain and other environmental factors
(Zeleke et al., 2013). Second, although S. alterniflora expanded rapidly
during 1996–2001, it can be easily omitted by human observers be-
cause it covered only a small area at that time. Compared to the field
surveys, remote sensing demonstrates its capability to remotely monitor
a very large area in a rapid and responsive manner (O'Connell et al.,
2017). From 2002 to 2017, although the CAGR of S. alterniflora was
relatively low, the total area kept growing at a very fast speed (about
82 ha per year). As a whole, the areas of S. alterniflora increased from
1 ha to 1365 ha during 1979–2017, which posed significant threats to
the biodiversity and environmental health in the coastal zone of China.
Therefore, it becomes more critical for the conservation agencies to
develop cost-effective control and management strategies, and to re-
store the coastal areas invaded by S. alterniflora.

Adaptation of our proposed methods from regional scales to na-
tional ones still faces a significant uncertainty. The main associated
species of S. alterniflora is the mangrove forest in this study site.
However, some other associated species will appear in different geo-
graphical zones in China, such as Phragmites australis (Ai et al., 2017).
To distinguish S. alterniflora from those species may require different
phenological knowledge.

5.4. GEE provides great potentials for pixel-based analysis

This study developed a new pixel-based method (Ppf-CM) in GEE
using 525 full Landsat scenes (19.96 billion pixels) to monitor S. al-
terniflora dynamics. We found that, as mentioned in Section 5.1, Ppf-CM
not only enhances the spectral separability between S. alterniflora and
others, but also accommodates the problems caused by the scarcity of
entire cloud-free Landsat scenes. These findings are in general agree-
ment with prior GEE-supported pixel-based studies (e.g. Azzari and
Lobell, 2017) and confirm that pixel-based methods outperform scene-
based methods to monitor S. alterniflora. Although GEE-supported
methods have been increasingly leveraged in various fields in the last
three years, such as agriculture (Phalke and Özdoğan, 2018), forestry
(Healey et al., 2018), water (Cian et al., 2018), and soil (Ying et al.,
2017), very few studies (Wang et al., 2017; Wang et al., 2018) have

been applied on invasive species detection.
There still exist some limitations of GEE. For example, we cannot

save a geometry file larger than 512 KB, and it would be desired to
make the deep learning methods much easier to implement on GEE
platform. In the near future, it is foreseeable that a growing number of
large-scale mapping studies with GEE will emerge, which benefits a lot
for us to understand, manage, and protect the earth. However, we also
should pay attention to some issues: (1) We call for worldwide re-
searchers to release their derived maps in GEE so that others can test,
use, or improve them; (2) GEE should establish sound accuracy as-
sessment, feedback, and modification mechanism to improve the ac-
curacy of the released products; (3) GEE should encourage all the users
around the world to upload their high quality ground observation data
to advance large-scale mapping studies.

6. Conclusions

This paper proposed a new pixel-based cloud-minimizing phenolo-
gical feature (Ppf-CM) for deep learning to understand Spartina alter-
niflora invasion in GEE. Ppf-CM mitigated the spatial variability in plant
phenology, improved the spectral separability between S. alterniflora
and background, and accommodated the impact of scarce entire scene
cloud-free Landsat imagery. It will advance all the phenology-based
composite image analysis at the pixel level to detect various vegetation
species, notwithstanding the large impact of clouds on the quality of full
Landsat scenes. Moreover, we found that using phenological features
yielded from Ppf-CM improved the performance of a deep learning
method (i.e. SAE) in detecting S. alterniflora. Hence, we have seen great
potential in developing prior knowledge based deep learning methods.
Finally, long-term and regional-scale maps of S. alterniflora were de-
rived using the most powerful detection strategy (i.e. Ppf-CM based
SAE) during 1995–2017 in the Beibu Gulf, which discovered the out-
break of S. alterniflora during 1996–2001 for the first time at the re-
gional scale. The long-term and regional-scale S. alterniflora maps can
serve as the intrinsic baseline data for the assessment, management,
and conservation of ecosystem services in this study area, including
biological invasion, biodiversity richness, climate change, and carbon
storage.
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