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Accurately  monitoring  the temporal,  spatial  distribution  and severity  of agricultural  drought  is  an  effec-
tive means  to reduce  the  farmers’  losses.  Based  on the  concept  of the  new  drought  index  called  VegDRI,
this  paper  established  a new  method,  named  the  Integrated  Surface  Drought  Index  (ISDI). In this  method,
the  Palmer  Drought  Severity  Index  (PDSI)  was  selected  as  the  dependent  variable;  for  the  independent
variables,  12  different  combinations  of 14  factors  were  examined,  including  the  traditional  climate-based
drought  indicators,  satellite-derived  vegetation  indices,  and  other  biophysical  variables.  The  final  model
was established  by fully  describing  drought  properties  with  the  smaller  average  error  (relative  error)
and larger  correlation  coefficients.  The  ISDI  can  be used  not  only  to monitor  the  main  drought  features,
including  precipitation  anomalies  and  vegetation  growth  conditions  but  also  to  indicate  the  earth  sur-
face  thermal  and  water  content  properties  by  incorporating  temperature  information.  Then,  the ISDI  was

used  for  drought  monitoring  from  2000  to 2009  in  mid-eastern  China.  The  results  for  2006  (a  typical  dry
year)  demonstrate  the effectiveness  and  capability  of  the  ISDI  for  monitoring  drought  on  both  the  large
and  the  local  scales.  Additionally,  the  multiyear  ISDI  monitoring  results  were  compared  with  the  actual
drought  intensity  using  the  agro-meteorological  disaster  data  recorded  at the agro-meteorological  sites.
The investigation  results  indicated  that  the  ISDI  confers  advantages  in the  accuracy  and  spatial  resolution

nd  ha
for monitoring  drought  a

. Introduction

Drought is an important disaster, and its impacts on agricul-
ure are enormous. The drought events also have huge harm to
conomies, societies and environments (Wilhite, 2002). In recent
ecades, the impacts of drought have escalated in response to
opulation increase, environmental degradation, industry develop-
ent, and fragmented government authority in water and natural

esources management (Wilhite, 2002). China is a region that
s prone to natural disasters. The grain loss caused by drought
ccounted for 60% of all grain losses caused by meteorological disas-
ers, resulting in 58% or more of economic losses (Li et al., 1999).
he frequent occurrence of drought, coupled with the impact of
lobal warming, poses an increasingly severe threat to the Chinese
gricultural production (Ma et al., 2004).
Drought differs from other natural disasters, such as floods,
yphoons, and earthquakes (Wilhite, 2000). First, the effects of
rought often accumulate slowly over a considerable period of

∗ Corresponding author. Tel.: +86 10 84943253; fax: +86 10 84949045.
E-mail address: zhoulei8341@163.com (L. Zhou).

303-2434/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jag.2012.11.003
s  significant  potential  for drought  identification  in  China.
©  2012  Elsevier  B.V.  All rights  reserved.

time and may  linger for years after the termination of the event,
and both the onset and end of drought are difficult to determine
(Tannehill, 1947). Second, the absence of a precise and universally
accepted definition of drought adds to the confusion regarding
drought research and identification (Dracup et al., 1980; Gibbs,
1975; Wilhite et al., 1987; Wilhite and Glantz, 1985). Agricultural
drought refers to a period with declining soil moisture content
and consequent crop failure (Son et al., 2012; Boken et al., 2005).
Considering the temporal and spatial complexity of a drought,
it is difficult to accurately and quantitatively identify the onset,
end, and duration of drought. During the latter part of 20th
century, scientists established various drought indices based on
different discipline perspectives and their own understanding of
the definition of drought. The drought monitoring indices based
on traditional meteorological data were developed first (Wilhite
and Glantz, 1985). The meteorological indices offer advantages in
quantitatively characterizing drought and applicability in different
regions. The Standardized Precipitation Index (SPI) based on simple

principles has been widely used all over the world, which allows
for monitoring and assessment of drought at different timescales,
and shows good comparability between different areas (Guttman,
1999; McKee et al., 1993). The Palmer Drought Severity Index

dx.doi.org/10.1016/j.jag.2012.11.003
http://www.sciencedirect.com/science/journal/03032434
http://www.elsevier.com/locate/jag
mailto:zhoulei8341@163.com
dx.doi.org/10.1016/j.jag.2012.11.003
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PDSI) is established based on a simplified water balance princi-
le. It takes into account the antecedent precipitation and water
upply and demand, involving calculations related to evapotranspi-
ation, soil water supply, runoff, and surface soil water loss (Palmer,
965; Alley, 1984; Guttman, 1997). The PDSI is suitable not only for
onthly drought monitoring but also for weekly drought detection

Bayarjargal et al., 2006; Dai and Trenberth, 1998; WMO,  1975).
Remote sensing technology makes it possible for retrieval of soil

oisture, and vegetation conditions across large areas. The Moder-
te Resolution Imaging Spectroradiometer (MODIS) data plays an
ncreasingly important role in drought monitoring and assessment
Wan  et al., 2004), owing to the associated rich spectral informa-
ion, short revisit cycle, and convenient data access means. The
ormalized Difference Vegetation Index (NDVI) is the most widely
sed indicator of vegetation growth conditions and vegetation cov-
rage, which has been successfully used to estimate vegetation
iomass and assess environmental conditions (Chen et al., 2012;
annari et al., 1995; Justice et al., 1985; Rasmussen, 1998; Tucker
nd Sellers, 1986); this is why NDVI is widely used in agricultural
rought monitoring (Gutman, 1990; Henricksen and Durkin, 1986;
ucker, 1989; Tucker and Choudhury, 1987). Vegetation Condition
ndex (VCI) is developed based on NDVI time-series data (Kogan,
990). Compared to NDVI, VCI can better reflect the relationships
etween the vegetation growth conditions and the precipitation
nd can minimize the interference of other environmental factors
hen used to monitor regional agricultural drought during the

rowth season (Liu and Kogan, 1996; Wang et al., 2001a,b). Percent
f Average Seasonal Greenness (PASG) is another index based on
istorical remote sensing vegetation index sequence (Brown et al.,
008). PASG evaluates vegetation growth conditions by calculating
he percentage between the greenness in specific period and the
verage historical greenness over the same period (Tadesse et al.,
005).

Surface temperature is also an indicator of drought. Drought
nduces water deficit, which would reduce transpiration and lead
o the rise of surface temperature, while relative low temperature
tands for the normal healthy status of vegetation under the same
ondition of vegetation coverage (Jackson et al., 1981; Wan  and
ozier, 1996). The Temperature Condition Index (TCI) is developed
ased on the principle mentioned above and has been widely used

n drought monitoring (Kogan, 1995). Vegetation growth condi-
ions will be affected by drought. There will be a decrease in the
egetation index, such as NDVI, and an increase in the canopy tem-
erature because of the stomata closure to minimize water loss
y transpiration (McVicar and Jupp, 1998). Thus, the slope of Ts
Surface Temperature)/NDVI can be used to assess the vegetation
rought level. The application of the Ts-NDVI method in drought
onitoring has been investigated by many researchers (Berliner

t al., 1984; Mottram et al., 1983; Pinter et al., 1979). The Vegetation
upply Water Index (VSWI) has been developed based on the the-
ry mentioned above (Bayarjargal et al., 2006; Gillies and Carlson,
995; Gillies et al., 1997; Price, 1990). Using the Ts/NDVI method,
cVicar (2001) rapidly assessed the 1997 drought in Papua New
uinea and validated the effectiveness of this method in drought
onitoring (McVicar and Bierwirth, 2001).
Drought is a complex natural disaster. However, each drought

ndex has its own advantages and weaknesses in drought mon-
toring. Almost all the drought indices are based on specific
eographical and temporal scales; it is difficult to spread its
pplicability all over the world. Because of the meteorological
rought indices using discrete, point-based meteorological mea-
urements collected at weather station locations, the results have

estricted level of spatial precision for monitoring drought pat-
erns. Remote sensing technology provides alternative data for
perational drought monitoring, with advanced temporal and spa-
ial characteristics (Misshra and Singh, 2010). However, additional
rvation and Geoinformation 23 (2013) 397–410

information still needs to be incorporated so as to thoroughly
explain the anomaly in vegetation caused by drought. Besides,
to achieve a more accurate description of drought characteristics,
drought intensity differences caused by vegetation type, temper-
ature, elevation, manmade irrigation, and other factors under the
same water condition must be considered (Kallis, 2008; Zhang et al.,
2009). The integration of traditional meteorological data, remotely
sensed drought indices, together with information on elevation,
vegetation type, and man-made irrigation, provides a promising
approach to better characterize the spatial extent and intensity
of drought. This research method becomes an urgent problem for
further drought investigation.

The Classification And Regression Tree (CART) confers unique
advantages in establishing a drought index compared with the tra-
ditional statistical regression techniques. It can handle a variety of
data types (e.g. nominal, interval, and ratio data), and data without
a normal distribution (non-parametric) and hierarchical relation-
ships among variables (Brown et al., 2008). CART can also process
large data volumes efficiently and has transparent, interpretable
model outputs (De’ath and Fabricius, 2000). Tadesse et al. (2005)
first proved the effectiveness of data-mining methods in drought
risk management, identification, and monitoring. Using the regres-
sion tree model, the Vegetation Drought Response Index (VegDRI)
was established (Brown et al., 2008). VegDRI uses PDSI as the
dependent variable and incorporates different types of indepen-
dent variables, including meteorological indices, remotely sensed
indices, and biophysical data. Presently, this method has been
used for near-real time drought monitoring throughout the United
States. However, the VegDRI is still in a stage of improvement, and
it needs further refinement. For example, the VegDRI mainly util-
izes drought indices calculated from precipitation and vegetation
conditions to detect the spatial extent and intensity of drought
without other environmental variables, such as land surface tem-
perature. The characteristics of drought indices and methods of
optimal inputs selection for an integrated drought index need to
be investigated in future research (VegDRI, 2011).

The objective of this paper is to establish a new integrated
drought monitoring method named Integrated Surface Drought
Index (ISDI) based on the concept of VegDRI. By selecting the best
combination of variables with better accuracy, this method inte-
grates the land surface water and thermal environment conditions,
vegetation growth conditions, and biophysical information. This
paper uses the ISDI to derive drought-detected results by consid-
ering the spatial extent and intensity of drought in mid-eastern
China from 2000 to 2009. The results of the ISDI are then evaluated
in terms of the spatial and temporal aspects to verify the advantage
of the newly integrated drought monitoring model with respect to
the accuracy, spatial resolution, and the application potential for
drought identification in China.

2. Study area and data

2.1. Study area

Mid-eastern China was chosen as the study area (Fig. 1), cov-
ering 16% of the whole country (31–44.5◦N, 109–123◦E). This
area includes 11 provinces and is mainly located in the semi-arid
and arid area that span middle latitudes and in the semi-humid
and semi-arid area of the warm temperate zone (Zheng and Li,
2008). Historically, severe droughts have frequently occurred in
mid-eastern China because of the uneven spatial distribution of

precipitation caused by the East Asian monsoon climate. The study
area incorporates complex terrain, including the North China Plain
and the mountains, the whole Shandong hilly area, the western part
of Liaohe Plain and the eastern part of the Inner Mongolia Plateau.
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Fig. 1. Study area and the distribution of me

he land-cover type of this area is also rich with crops, grassland
nd deciduous broad-leaf forest. The ISDI was originally designed
o integrate multiple data sources and affords good comparability
n various regions. The ability of the ISDI in drought monitoring
an be adequately evaluated in this study area. If the ISDI has the
apability for drought monitoring in this area, the potential for a
ationwide application of the ISDI can be identified, and the use of
he ISDI can be extended to other parts of the world.

.2. Data

Data used in this research includes the in situ meteorologi-
al data, agro-meteorological disasters dataset, remotely sensed
ata, and biophysical data. The meteorological data was acquired
rom the China Meteorological Data Sharing Service System
http://cdc.cma.gov.cn/). Data of daily precipitation and tempera-
ure during 50 years (1960–2009) from 130 weather stations in the

tudy area was selected as the data source. The agro-meteorological
isaster 10-day interval observation dataset (2000–2009) of 298
gro-meteorological sites in the study area was  also obtained
rom the China Meteorological Data Sharing Service System. The
ogical stations/agro-meteorological stations.

16-day Maximum Value Composited (MVC) MODIS NDVI time
series products (MOD13A2, 1 km × 1 km)  from 2000 to 2009, an
8-day average value of composited Land Surface Temperature
(LST) products (MOD11A2, 1 km × 1 km)  from 2000 to 2009 and
the land cover data (MOD12Q1, 500 m × 500 m)  for 2007 of the
study area were acquired from U.S. National Aeronautics and Space
Administration (NASA) Land Processes Distributed Active Archive
Center (LP DAAC). The LST 8-day products were composited to 16-
day products by calculating the average value of adjacent images
to maintain the same temporal resolution as that of the NDVI
dataset. The ecological zoning data was derived from a Chinese
eco-geographical zoning map  (Zheng and Li, 2008) and converted
into a 1 km resolution raster image. Available water-holding capac-
ity (AWC) data was extracted from global 10 km resolution Profile
Available Water Capacity (PAWC) data provided by the Inter-
national Geosphere-Biosphere Programme (IGBP). The irrigation
water management distribution data was obtained from the Global

Irrigation Area Map  (GIAM, 10 km-8 classes: Version 2.0) released
by the International Water Management Institute (IWMI) with a
10 km resolution. The Digital Elevation Data (DEM) was derived
from the “China Western Environment and Ecology Science Data

http://cdc.cma.gov.cn/
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enter” (http://westdc.westgis.ac.cn) with a spatial resolution of
 km.  The AWC, and irrigation zoning data were interpolated from
0 km into a 1 km raster image (Land cover data was interpo-

ated from 500 m to 1 km)  using the Kriging Interpolation method
rovided by ArcGIS 9.3 software to ensure a consistent spatial reso-

ution. The Kriging method is an advanced geostatistical procedure
hat generates an estimated surface from scattered set of points
ith attribute values. It is proved to be a useful statistical down-

caling method for the earth’s surface biophysical properties (Voltz
nd Webster, 1990).

. Methodology

.1. Remotely sensed data and meteorological data processing

.1.1. Remote sensed data processing
The Terra MODIS LST and NDVI products were processed to

emove cloud-contaminated pixels using the quality control doc-
ments before used as inputs to calculate drought indices. The
DVI data sets are 16-day MVC  products. However, there are

till noise in the NDVI time series caused by cloud contamination
nd atmospheric variability, which greatly affects the accuracy of
he vegetation dynamics (phenology) measurements and drought
ndices. In this paper, a simple, but robust, method based on
he Savitzky–Golay filter (Savitzky and Golay, 1964) was used to
educe the noise and to construct a high-quality NDVI time-series
Chen et al., 2004). This approach has advantages in smoothing out
oises and reflecting the genuine variation pattern of NDVI itera-
ion process. We  applied this method to the NDVI time-series for

id-eastern China during the 10-year period from 2000 to 2009.

.1.2. Meteorological data processing
The daily rainfall data and temperature data were rigorously

xamined before importing them as data sources to calculate the
eteorological drought indices (PDSI and SPI). The missing mea-

urements were replaced by linearly interpolated values at the
orresponding period of the adjacent two-years. The trace precip-
tation value, which cannot be recorded, was defined as 0.01 mm.
aily meteorological data was converted into a 16-day dataset. An
ccumulation method was used to process the rainfall data, but the
verage temperature value was calculated for a span of 16 days.

.2. Data inputs for the integrated model

To fully describe the drought characteristics, various drought
ndices and land surface biophysical data were selected to char-
cterize the vegetation growth condition, vegetation water stress,
urface water and thermal environments, and regional drought dif-
erences (Table 1).

.2.1. Climate data inputs for ISDI
In this study, the 16-day interval self-calibrated PDSI and multi-

cale SPI (1-month, 2-month, 3-month, 6-month, 9-month, and 12-
onth) during 1960–2009 based on observed meteorological data
ere calculated using the processed meteorological data. The AWC

nput values for PDSI calculation are the average values extracted
sing the central 9 km × 9 km window at the site location based on
he AWC  raster map.

.2.2. Satellite data inputs
Remotely sensed drought index inputs, i.e. VCI, TCI, VSWI, PASG,

nd Start of Season Anomaly (SOSA) (Table 2) were calculated based

n the 16-day MODIS NDVI products and averaged 16-day LST. The
CI, PASG and SOSA within the six drought indices were created

o detect drought condition through monitoring vegetation growth
ondition and vegetation phenophase anomalies based on the NDVI
rvation and Geoinformation 23 (2013) 397–410

time series data. TCI is used to monitor drought through the land
surface anomalies based on thermal infrared remote sensing infor-
mation. The VSWI approach, which is an additive combination of
NDVI and thermal data, was calculated to detect vegetation stress,
moisture, as well as drought affected areas (Zhou et al., 2012).

In order to calculate the PASG, the Seasonal Greenness (SG) met-
ric for each 16-day period was  calculated for the 10 years time
series. SG was  obtained using the accumulated NDVI above the
base line across the 16 days using the NDVI interpolated between
the smoothed high-quality NDVI in consecutive 16-day composites
(Zhou et al., 2012). The computing method is shown as Eq. (1):

SG =
∫

P1

(NDVI − NDVIb) +
∫

P1

(NDVI − NDVIb)

+ · · · +
∫

P16

(NDVI − NDVIb) (1)

where P1, P2, ..., P16 refer to the day in a 16-day period. NDVI is
the linearly interpolated smoothed value in the MODIS composi-
ted data and NDVIb is the latent NDVI value defined at the start of
the growing season. PASG was then generated using equation in
Table 2.

SOSA was calculated at the pixel level for each year as the equa-
tion in Table 2. Crop phenology was  represented using a series of
piecewise logistic functions of time using processed time-series
NDVI products (Zhou et al., 2010). The onset and end of greenness
were identified by the rate of change in the curvature of the fitted
logistic models (Zhang et al., 2003).

3.2.3. Biophysical data
In this study, the biophysical inputs of ISDI include the Land

Cover Data, Ecological Zoning Data, Irrigation Water Manage-
ment Distribution Data, AWC, and DEM. The Land Cover data was
included in the ISDI to reflect the different drought characteristics
exhibited by each land cover type. The Ecological Zoning Data was
selected to reflect the different environmental characteristics (for
example, growing season length and plant species) across the study
area. The Irrigation Water Management Distribution Data exhibits
the great difference of vegetation sensitivity to drought caused by
the irrigation. AWC  represents the potential of the soil to hold mois-
ture and make it available to plants. DEM accounts for the basic
climate conditions and the solar energy budget difference.

3.2.4. Combination plans of the variables
The determination of the combination of variables is challeng-

ing because each drought index tends to focus on one aspect of
drought characteristics, and the drought monitoring capacity of
drought indices varies at different stages of the vegetation grow-
ing season across different regions. In our research, 12 candidate
combinations of drought indices and biophysical parameters were
designed to establish the integrated drought index.

First, the common variables in each combination were ascer-
tained, including the SOSA, SPI, land cover, AWC, GIAM, and eco-
geographical region. The SOSA index provides a measure of how
the start of the growing season for a special year compares to the
historically average level for the same period. The SPI can be used
to quantitatively reflect the water deficit status of the select period
compared to the historical average precipitation. Other biophysical
variables were used to reflect the regional differences of drought.

Second, the appropriate inputs were selected to reflect the
vegetation growth condition (or water stress), land surface tem-
perature or the integrated inputs that can reflect both vegetation

growth condition and land surface temperature at the same time.
The available inputs included NDVI, PASG, VCI, LST, TCI, and VSWI.
With dependent variables and common independent variables kept
constant, inputs mentioned above were added into the scheme

http://westdc.westgis.ac.cn/
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Table  1
Data inputs for the integrated drought monitoring model construction.

Name Type Acronym Source Format References

Palmer Drought
Severity Index

Climate PDSI China Meteorological Data
Sharing Service System

At sites Palmer (1965)

Standardized
Precipitation Index

Climate SPI China Meteorological Data
Sharing Service System

At sites McKee et al. (1993)

Normalized Difference
Vegetation Index

Satellite NDVI Land Processes Distributed
Active Archive Center (LP
DAAC)

1  km raster http://lpdaac.usgs.gov/get data

Land  Surface
Temperature

Satellite LST LP DAAC 1 km raster http://lpdaac.usgs.gov/get data

Vegetation Condition
Index

Satellite VCI Calculated using NDVI 1 km raster Kogan (1995, 1997)

Temperature Condition
Index

Satellite TCI Calculated using LST 1 km raster Kogan (1995, 1997)

Vegetation Supply
Water Index

Satellite VSWI Calculated using NDVI and
LST

1 km raster Bayarjargal et al. (2006), McVicar and
Bierwirth (2001)

Start  of Season
Anomaly

Satellite SOSA Calculated using NDVI 1 km raster Brown et al. (2008)

Percent of Average
Seasonal Greenness

Satellite PASG Calculated using NDVI 1 km raster Brown et al. (2008)

Elevation Biophysical DEM Environmental & Ecological
Science Data Center for
West China, National
Natural Science Foundation
of China

1 km raster http://westdc.westgis.ac.cn

Ecological Regions Biophysical EcoRe China’s Eco Geographical
Region Map

Vector Zheng and Li (2008)

Land  Cover Biophysical LanCo LP DAAC 500 m raster http://lpdaac.usgs.gov/get data
Soil  Available Water

Capacity
Biophysical AWC  International

Geosphere-Biosphere
Programme (IGBP)

10 km raster http://www.igbp.net/
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Irrigated Agriculture
Region

Biophysical IrrAg Global Map
Area (GIAM

o construct the integrated index. The accuracy was compared
mong the integrated indices, including the one obtained solely
ith the vegetation information or the temperature information

nd the one integrating VSWI, which contains information on both
egetation and temperature. Six Combinations of this type each
ontains a total of seven independent variables.

Third, we selected the elevation data as an additional input
or four out of six combinations mentioned above, which showed
igher regression accuracy. In this step, four combinations each

onsist of eight independent variables. We  used this method to test
f the elevation data can further improve the accuracy of the models.

Finally, groups of two indices PASG, TCI or VCI, TCI were used to
haracterize information on the vegetation condition and surface

able 2
omputing method of data inputs for ISDI based on satellite data.

Drought indices Formula 

(1) Vegetation Condition Index (VCI) VCIijk = NDVIijk−NDVIi,mi
NDVIi,max−NDVIi,m

(2)  Percent of Average Seasonal
Greenness (PASG)

PASGi,PnYn = (SGi,PnYn/

SG =
∫ Pn=EOS

P1=SOS
NDVI

(3) Temperature Condition Index (TCI) LSTijk = LSTi,max−LSTijk
LSTi,max−LSTi,min

(4)  Vegetation Supply Water Index (VSWI) VSWIijk = NDVIijk/LSTi

(5)  Start of Season Anomaly (SOSA) SOSAi = SOSTi − SOSTm

DVIijk – 16 day MVC NDVI for pixel i in period j for year k.
DVIi,min and NDVIi,max – Multiyear minimum and maximum NDVI, respectively, for pixe
Gi,PnYn – SG for pixel i in period Pn for year Yn.
SGi,Pn – Multiyear average SG(x) for pixel i in period Pn.
1,  Pn – The median start and end of the growing season (SOST, EOST).
STijk – Land surface temperature for pixel i in period j for year k.
STi,min and LSTi,max – Multiyear minimum and maximum LST, respectively, for pixel i.
OSAi – SOSA (in number of the days) for year i.
OSTi – Start of season DOY for year i.
OSTmed – Median start of season DOY from 2000 to 2009.
igated 10 km raster http://www.fao.org/nr/water/

temperature anomalies. Elevation information was included in the
scheme as well. The differences in precision of combinations were
compared while building the comprehensive model. Each of the
two combinations of this type contains a total of nine independent
variables.

3.3. Integrated multisource data mining technology

A commercial CART algorithm (Cubist 2.07) was used in this

investigation to analyze the historical drought indices and bio-
physical variables and to build the three seasonal, rule-based,
linear regression models (Quinlan, 1993, 1996). The methodologi-
cal flowchart of the integrated drought model is shown in Fig. 2.

Source and reference

n

in
Kogan (1995, 1997)

xSGi,Pn) × 100 Brown et al. (2008)

Kogan (1995, 1997), Bayarjargal et al. (2006)

jk McVicar and Bierwirth (2001)

ed Brown et al. (2008)

l i.

http://lpdaac.usgs.gov/get_data
http://lpdaac.usgs.gov/get_data
http://westdc.westgis.ac.cn/
http://lpdaac.usgs.gov/get_data
http://www.igbp.net/
http://www.fao.org/nr/water/
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instances and rules mode in the software were used to analyze the
data. The outputs of Cubist are a series of unordered rules, with the
syntax as the following example:

Table 3
Three seasonal modeling phases for the ISDI.

Phase Start date (DOY) End date (DOY) Phenological stage

Spring 65 145 Growing season
started, early
growth
Fig. 2. Methodological flow-chart of t

he core idea of CART model is divided into two categories: clas-
ification and regression. First, by comparing the information gain
f all the properties, the test attribute with the maximum value
s selected as the classification criterion to construct the first-
rade decision tree. The same method is used for the cycling
reatment and stepwise refinement. The multilevel decision tree
s constructed, and finally, the leaf nodes are generated. Then, a set
f unordered rules are generated based on the statistical regression
f the classified variables.

.4. The integrated model construction method

The historical SPI and self-calibrated PDSI data for 130 meteo-
ological stations in the study area were collected. The PDSI was
elected as the dependent variable in the ISDI model for three pri-
ary reasons. First, unlike other meteorological drought indices,

he PDSI not only combines the precipitation and temperature
nformation but also factors the regional differences in Soil Avail-
ble Water Content. Second, the PDSI value offers advantages in
dentifying multiple levels of drought severity and better compara-
ility in different regions. Third, the drought monitoring capability
f the PDSI has been validated in many regions of the world, and
t has been identified as the national standard for meteorological
rought monitoring in China. Brown et al. (2008) revealed that the
2-week SPI is suitable for the spring and summer VegDRI model,
nd the 40-week SPI is suitable for the fall model. Thus, in this paper,
he 12-month SPI was selected as the independent variable for the
pring and summer phase of the ISDI models, and the 9-month SPI
as used as the fall ISDI model.
For the remotely sensed drought indices, the information from
he 9 km × 9 km pixel window centered on each station loca-
ion was extracted, and the average value from the window was
alculated for this continuous variables to represent the value
egrated Surface Drought Index (ISDI).

of the site location. The NDVI, LST, PASG, TCI, and VSWI were
sequentially extracted for the same period as the SPI and PDSI.
The SOSA has one value each year. The elevation, AWC, GIAM, and
eco-region were considered to be the inherent properties of the
Earth. There was little change in the land-cover types in the study
area during the research period of 2000–2009, thus, land cover
was also considered to be a constant variable. The 9 km × 9 km
pixel window method was  also applied to land cover data but
the dominant (or majority) class in each window was selected to
represent the value of the site location. As the vegetation has dif-
ferent sensitivities to water stress during different growth stages
(Wu et al., 2010), the growing season was divided into three sea-
sonal phases: spring, summer and fall. The specific time-dividing
method is shown in Table 3.

The training database of all the aforementioned variables was
assembled for all the weather stations from 2000 to 2009. The
database was  temporally subdivided into three seasonal subdivi-
sions corresponding to the three seasonal phases. Then, the three
datasets were imported into the Cubist 2.07 software, and the
Summer 145 241 Maturity, Peak
growth

Fall 241 337 Senescence,
harvest
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Table  4
Drought grades classification of ISDI.

Drought intensity ISDI value

Wet  1 < ISDI
Normal −1 < ISDI ≤ 1
Mild drought −2 < ISDI ≤ −1
Moderate drought −3 < ISDI ≤ −2
Severe drought −4 < ISDI ≤ −3
Extreme drought ISDI ≤ −4

d
p
(
t
r
t
t
I
n
I

illustrate the detailed spatial resolution and localized drought mon-
itoring capabilities provided by ISDI. Although this evaluation was

T
C

Rule:
If: SOSA > 10, SPI ≤ −0.59, Elevation ≤ 1461.9, AWC  ≤ 260
Then: ISDI = −0.4118 + 1.01 × SPI − 0.009 × SOSA − 0.0069 × AWC
The appropriate rules were applied to the raster format input

ata for each 16-day period. The site-scale SPI variable was inter-
olated to 1 km raster images using the Inverse Distance Weighting
IDW) method. If the variables associated with a pixel met  the
hreshold criteria identified by one rule, then the multivariate linear
egression equation associated with this rule was  used to calculate
he ISDI value. If a pixel met  two or more rules, then the results of all
he rules were averaged to calculate the final ISDI value. Finally, the
SDI monitored maps were obtained with 16-day intervals span-

ing the period 2000–2009 and the drought grades classification of

SDI is shown in Table 4.

able 5
omparison of 12 contribution results of the integrated drought monitoring model.

No. Independent variables # of variables Phase 

1 PASG, SOSA, SPI, Landcover,
AWC, GIAM, Eco region

7 Spring 

Summer
Fall 

2 VSWI,  SOSA, SPI, Landcover,
AWC, GIAM, Eco region

7 Spring 

Summer 

Fall 

3 VCI,  SOSA, SPI, Landcover,
AWC, GIAM, Eco region

7 Spring 

Summer 

Fall

4 TCI,  SOSA, SPI, Landcover,
AWC, GIAM, Eco region

7 Spring 

Summer 

Fall 

5 LST,  SOSA, SPI, Landcover,
AWC, GIAM, Eco region

7 Spring 

Summer 

Fall 

6 NDVI, SOSA, SPI, Landcover,
AWC, GIAM, Eco region

7 Spring 

Summer 

Fall

7 VSWI, SOSA, SPI, elevation,
Landcover, AWC, GIAM,
Eco region

8 Spring 

Summer
Fall 

8 TCI,  SOSA, SPI, elevation,
Landcover, AWC, GIAM,
Eco region

8 Spring 

Summer
Fall 

9 LST,  SOSA, SPI, elevation,
Landcover, AWC, GIAM,
Eco region

8 Spring 

Summer 

Fall 

10 NDVI, SOSA, SPI, elevation,
Landcover, AWC, GIAM,
Eco region

8 Spring 

Summer 

Fall 

11 PASG,  TCI, SOSA, SPI, elevation,
Landcover, AWC, GIAM,
Eco region

9 Spring 

Summer 

Fall 

12 VCI,  TCI, SOSA, SPI, elevation,
Landcover, AWC, GIAM,
Eco region

9 Spring 

Summer 

Fall
rvation and Geoinformation 23 (2013) 397–410 403

3.5. Evaluation of ISDI drought monitoring behavior using in situ
drought observations

Eleven representative ago-meteorological sites were selected to
verify the spatial monitoring results of the ISDI under four prin-
ciples: first, the spatial distribution of selected site is relatively
uniform; second, the sites have a good observational basis, and the
observed data are relatively complete; third, the sites can repre-
sent three main land-cover types (crops, grassland and forests);
and fourth, these sites are located in irrigated or non-irrigated
areas, while the elevation of the sites is also obviously different. The
agro-meteorological disaster 10-day interval observation dataset is
sorting-out in statistics of agro-meteorological 10-day or monthly
reports from the agro-meteorological sites. The dataset includes
observed disaster name, afflicted crops, disaster degree, disaster
intensity, affected area, and afflicted percentage during the period
from September 1991 until now. In this paper, the ISDI monitored
drought-affected agriculture area (ISDI < −1) and afflicted percent-
age of the cunty (or city) area where the agro-meoteological sites
located in was calculated. Then, the ISDI monitored results were
compared with the agro-meteorological disaster 10-day interval
observation datasets. This quantitative analysis can be used to
limited to 11 representative sites and in 2006 which is the typical
dry year, drought conditions and patterns characterized by ISDI for

Average error Relative error Correlation coefficient

0.3688 0.24 0.94
0.7152 0.42 0.87
0.3984 0.2 0.95

0.4444 0.29 0.91
0.8025 0.47 0.83
0.5396 0.28 0.92

0.5754 0.38 0.88
0.9007 0.53 0.81
0.5873 0.31 0.91

0.651 0.43 0.85
0.8894 0.52 0.82
0.6044 0.32 0.90

0.5376 0.35 0.89
0.8312 0.49 0.84
0.5091 0.27 0.92

0.4605 0.3 0.91
0.7621 0.45 0.85
0.5733 0.3 0.91

0.3569 0.23 0.94
 0.7064 0.42 0.87

0.4105 0.22 0.95

0.5522 0.36 0.90
0.7922 0.46 0.86
0.4625 0.24 0.94

0.4467 0.29 0.92
0.7257 0.43 0.87
0.4078 0.21 0.95

0.3619 0.24 0.94
0.6376 0.37 0.89
0.4291 0.22 0.94

0.5399 0.35 0.89
0.7398 0.43 0.87
0.4524 0.24 0.94

0.6209 0.41 0.88
0.7976 0.47 0.86
0.5579 0.29 0.92
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his area are fairly representative of the whole mid-eastern China
rea.

To further analyze the temporal drought monitoring behavior of
SDI during the whole study period, the ISDI 16-day interval mon-
toring results at the agro-meteorological sites from 2000 to 2009

ere extracted using the 9 km × 9 km window. The ISDI average
alue of all pixels in the extraction window was calculated to rep-
esent the drought degree at the site location. At the same time,
he corresponding drought and flood observational records dur-
ng the same period were obtained from the agro-meteorological
ites. The trend of the corresponding relationship between the ISDI
onitored results and field observation results were compared. In

omparing the ISDI monitored values and corresponding obser-
ations, the observation results were assigned according to the
evel of drought and flood conditions. The smaller values of the
SDI represent the more severe drought, while the greater values
epresent more abundant rainfall. 1, 2, 3, and 5 represent severe
rought, moderate drought, mild drought, and continuous rain or
ood condition, respectively. The capability of ISDI used for drought
onitoring during different period can be evaluated using this
ethod.

. Results and discussion

.1. Precision of the integrated model construction

The specific construction schemes of the integrated drought
ndex are shown in Table 5.

The 12 schemes in Table 5 can be divided into 3 groups accord-
ng to the number of independent variables in the model: schemes
1)–(6) with 7 independent variables, schemes (7)–(10) with 8
ndependent variables and schemes (11) and (12) with 9 inde-
endent variables. Comparison of the 3 groups of scheme shows
hat schemes (7)–(10) have the highest overall accuracy, with the
orrelation coefficient larger than 0.9 in spring and fall phases,
nd the correlation coefficients of summer are also larger than
.86. The schemes (1)–(6) and schemes (11) and (12) have the
imilar accuracy, with the correlation coefficients in the range of
.8–0.94. This indicates that the regression accuracy is not propor-
ional to the number of independent variables when constructing
he integrated drought monitoring model. The most high-precision
chemes in Table 5 are schemes (7), (1), and (10). The overall accu-
acy of scheme (7) is slightly higher than scheme (1), with the lower
verage error of 0.3569 and 0.7064 in spring and summer phases
espectively. Only the average error (0.4105) in fall phase of scheme
7) is a little larger than scheme (1). Scheme (10) only has higher
ccuracy in summer phase than scheme (7) and scheme (1), with
orrelation coefficient reaches 0.89, while the accuracy of spring
nd fall phase are both lower than the two schemes mentioned
bove, with average error of 0.3619 and 0.4291, respectively.

Many studies have demonstrated that the land surface tempera-
ure has a significant impact on the vegetation growth status (Wang
t al., 2001a,b; Wang et al., 2003; Yang et al., 1997). High temper-
ture has an important effect in terms of causing and aggravating
rought (Yang et al., 1998). The integrated model containing VSWI
nd elevation (Table 5(7)) performs more precisely than the models
ith single information (Table 5(1)–(6), (8)–(10)) or the combi-
ations of VCI, TCI and PASG, TCI (Table 5(11) and (12)). Through
omparing all of the schemes, we found that scheme (7) is the most
uitable scheme for calculating ISDI values. In addition to the best
egression accuracy among schemes in Table 5 on average, scheme

7) which incorporated VSWI, elevation and other information, can
omprehensively characterize drought in that it considered not
nly the vegetation condition but also the surface water content
nd thermal environment anomaly. Therefore, we choose scheme
rvation and Geoinformation 23 (2013) 397–410

(7) to calculate the ISDI. The scatter plots of scheme (7) predic-
tions and real values established using all sequences of historical
variables as the training database are presented in Fig. 3.

4.2. ISDI regional monitoring capabilities for a typical dry year

The average SPI series of the meteorological stations in the
study area indicated that the annual precipitation in 2006 was less
than normal level (Zhou et al., 2012). The disaster observations
(including drought, flood, gale, hail, diseases and insect pests) of
agro-meteorological stations also demonstrated that many regions
in this study area experienced various levels of drought at differ-
ent times in 2006. Thus, 2006 was selected as a typical dry year
to analyze the temporal and spatial effectiveness of the ISDI. The
monitoring results of which at four typical periods (DOY 145, 161,
241, and 305) are provided in Fig. 4.

Linfen, Xilinhot, Taian, Xuchang, Shangzhou, and Boxian are
among the 11 selected agro-meteorological stations in the study
area with drought field observation data in 2006. The observed
drought records are listed in Table 6.

The ISDI drought monitored results at the regional scales
are consistent with the field observation records of the agro-
meteorological stations. Fig. 4(a)–(d) indicates that the study
area has experienced various levels of drought during May and
November of 2006. The northern part of study area, including Inner
Mongolia, Shanxi, northern Shaanxi, Hebei, and Liaoning provinces,
experienced serious drought which lasted almost throughout the
entire growing season of 2006, and the most serious drought
occurred before June 2006; in particular, the drought intensity
in central Mongolia, including the Xilinhot site, reached a severe
level. According to the field observation records, the Xilinhot site
in eastern Inner Mongolia experienced 4 months of drought from
early May  to early September of 2006. Approximately 90–100% of
the region was  impacted by drought. The Linfen station experi-
enced 70 days of mild drought from April to June of 2006, and
the damaged area reached approximately 30–49% of the entire
region. These results have good consistency with the monitoring
results of Fig. 4(a) and (b). The ISDI monitored results demon-
strate that the southern parts of the study area, including Henan,
Shandong, Jiangsu, Anhui, Hubei, and Southern Shannxi, received
ample rainfall before June 2006 and some areas experienced par-
tial water logging. Some local regions between Xuchang and Boxian
at the eastern part of Henan province suffered severe drought.
The field drought observations of the Xuchang and Boxian agro-
meteorological sites indicate that severe drought occurred in this
area during mid-April and early June (Table 6). Boxian experi-
enced moderate drought, and the drought-impacted area covered
90–100% of the entire county. The ISDI monitored results demon-
strate that the drought began to spread after August (Fig. 4c and
d). Some areas of Shandong peninsula, Henan, southern Shannxi,
and Hubei began to suffer drought, and the drought was aggra-
vated after August. The drought center in the northern study area
shifted to two  sides, expanding from the middle part of Inner
Mongolia to both the eastern and western parts. The drought
was aggravated at the common border of Liaoning, Shaanxi, and
Inner Mongolia provinces and the drought classification reached
the extreme drought level, while the drought in northern Hebei
province exhibited some mitigation. Corresponding to the ISDI
drought monitoring results, the field observations at the Taian
station indicate that Taian suffered persistent drought from late
October to December of 2006, and the drought gradually became
more serious during that period.
For evaluating the drought monitoring accuracy of the ISDI on
a local scale with quantitative analysis, the drought-affected agri-
culture area (ISDI < −1) of the city area including Xilinhot, Linfen,
Taian, and Shangzhou was  counted at four typical periods. The
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(b) Summer Phase
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(c) Autumn Phase

Average |err|   0.4105

Relative |err|        0.22

Correl Coeff        0.95

Fig. 3. Scatter plots for scheme 7 predicted values and real values. The real values are the PDSI time series calculated based on observed meteorological data at meteorological
s riable
o  to th
C

c
t
s

r

T
D

tations. The predicted values are the ISDI values calculated based on independent va
f  ISDI error of all samples. The ‘Relative |err|’ is the ratio of average error magnitude
oeff’ represents the correlation coefficient between PDSI and ISDI.

orresponding relationship between the monitored results and

hose of the estimated stricken area was compared. The results are
hown in Table 7.

Table 7 shows that ISDI also offers good monitoring accu-
acy on the local scale. The percentage of drought-affected areas

able 6
rought field observations of selected 6 agro-meteorological stations in the study area fo

Site name Longitude (◦E) Latitu

Linfen 111.5 36.06
Linfen 111.5 36.06
Xilinhot 116.12 43.95
Taian  117.15 36.16
Taian  117.15 36.16
Taian  117.15 36.16
Taian  117.15 36.16
Xuchang 113.85 34.01
Shangzhou 109.96 33.86
Boxian 115.77 33.87
s using the rules generated by Cubist 2.07. The ‘Average |err|’ represents the average
e error magnitude that would result from always predicting the mean value. ‘Correl

monitored by the ISDI is consistent with the percentage observed

at agro-meteorological sites, and the overall errors are within
10%. In particular, the percentage of the observed drought-affected
area of Xilinhot reaches 90–100% in late May, late June, and early
September of 2006, while the ISDI monitored result is 95.83%

r 2006.

de (◦N) Drought occurrence time (2006)

 April
 May  to early June

 Early May  to early September
 Late April to early May
 Late October to early November
 Mid-November to late November
 December

 Mid-April to early May
 In mid-June
 Late April to mid-June
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Fig. 4. ISDI drought monitored results in mid-eastern China for DOY 2006145 (May 25, 2006), and DOY 2006161 (June 10, 2006), DOY 2006241 (August 29, 2006), DOY
2006305 (November 1, 2006). The green line is the corresponding city or county range in which the selected agro-meteorological stations are located. (For interpretation of
the  references to color in this figure legend, the reader is referred to the web  version of the article.)
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Table  7
Comparison of the drought field observations and the ISDI monitored results in 2006.

Site name Year Month Ten days Intensity Affected area (ha) Observed percentage Date (DOY) ISDI monitored percentage

Xilinhot 2006 5 3 Mild >66,666 90–100% 145 95.83%
Xilinhot 2006 6 3 Mild >66,666 90–100% 161 95.83%
Xilinhot 2006 9 1 Mild >66,666 90–100% 241 95.83%
Linfen  2006 6 1 Mild 13,333 40–49% 145 55.01%
Taian  2006 11 2 Mild 40,000 60–69% 305 50.02%
Shangzhou 2006 6 2 Mild 7333 10–19% 161 9.84%

Mild: dry soil layer appears and the dry-soil depth is less than 3 cm.  The upper leaves of crop roll because of lack water.
Mid:  The dry soil depth is 3–6 cm.  The leaves of crop wilt during the day because of drought persistence.
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ffected Area (ha) is crop area affected by drought.
ercentage is the ratio of drought affected crop area and sown area in the county 

bservation.

Fig. 4a–c). The results of the two methods are very close in value.
he percentage of the observed drought-affected area is between
0 and 49%, while the ISDI monitored result is 55.01% (ISDI < −1)
Fig. 4a). The error between the observed result and the moni-
ored result is approximately 5%. Taian suffered persistent drought
rom late October to December. The percentage of the drought-
ffected area is between 60% and 69% in mid-November, while
he ISDI monitored result is 50.02%. In addition, the afflicted per-
entage observation is in accordance with the ISDI result. The
fflicted percentage results of the agro-meteorological sites are
stimated through in situ observations. The main observations
re the agricultural drought level and soil moisture. However, the
SDI combines many other drought characteristics and influenc-
ng factors, including the traditional precipitation data, remotely
ensed vegetation conditions, and land surface water and thermal
nvironment anomalies. The ISDI can comprehensively reflect the
rought condition, and therefore, it exhibits some differences with
he field observations in the expression of drought characteris-
ics. Thus, the ISDI monitored results do not entirely correspond
o the field observations. In addition, the estimated observation
esults are vulnerable to subjective human factors. Generally, the
rror is approximately 10%. The man-made differences in criteria
mong the different sites will also produce some errors. Thus, the
0% error between the ISDI monitored results and field observation
esults are in the normal range of error fluctuation. All of the agro-
eteorological sites in Table 7 suffered mild drought, while the ISDI
onitored results of Xilinhot clearly reached severe drought levels

t DOYs 145 and 161 (Fig. 4a and b). The differences between the
SDI and observations are also due to the reasons listed above.

.3. The relationship between agro-meteorological site
bservations and the ISDI-derived drought intensity

The corresponding changes in the relation between the ISDI
onitoring results and site observations from 2000 to 2009 are

hown in Fig. 5.
Fig. 5 shows that the overall change trend of the ISDI values and

he trend of field observation results at the agro-meteorological
tations are basically the same, which demonstrates that ISDI has
ood monitoring capabilities on local scale (same as or less than
ounty areas). All of the ISDI series trends in Fig. 5 indicate that
he value of the ISDI becomes smaller with a continuous drought
r an increase in disaster levels. The ISDI monitoring results go up
ith the mitigation of the drought level and disaster reduction.

he ISDI at the sites during the drought period shows a pattern
imilar to the trough of a wave, but also reaches a large value in
on-dry periods. The ISDI value increase rapidly, even reaching a

aximum during the flood period or with the continuous rainfall.
ll of the ISDI series from Taian, Shangzhou, and Boxian reflect the
ariation characteristics. This indicates that the ISDI can be used to
ccurately monitor the occurrence of droughts and floods. Zhangbei
 the agro-meteorological site located in. The values are estimated results through

and Xilinhot, which are located in the northern study area, have less
annual precipitation and surface water content than those of other
sites. Correspondingly, the overall ISDI values are less than those
at other sites. To a certain extent, the ISDI can reflect the general
surface water content.

The ISDI values corresponding to three drought levels show
some differences among different sites but range from −2 to 0.
The ISDI values corresponding to moderate drought levels have a
larger range of −4 to −1. The ISDI corresponding to severe drought
levels has a range of −5 to −3, while the range corresponding to
floods is 0–4. The ISDI values corresponding to three observed
drought levels are not strictly distinct. This is because drought
intensity derived from human observation is determined according
to the crop growth conditions and soil moisture. The classifica-
tions of three drought levels are not perfectly defined because
of the differences in drought criteria used by different people at
different agro-meteorological stations. However, the ISDI has a
comprehensively quantitative characterization of drought, com-
bining traditional precipitation data and remotely sensed thermal
and water content environment status conditions. The ISDI and
observations exhibit some differences in the description of drought
characteristics. In addition, ISDI can detect more detailed drought
conditions with five levels of drought while the field observation
at agro-meteorological sites only has three drought categories. This
means that one observed drought value will necessarily correspond
to a range of ISDI values, causing the difference between the cor-
responding ISDI value and observed results at different sites and
different times.

5. Conclusions

This research comprehensively monitored drought character-
istics in terms of vegetation growth condition, surface water and
thermal environment, and biophysical information. The ISDI was
established using data-mining technology, which uses the PDSI
as a dependent variable and eight other factors as independent
variables based on the traditional meteorological drought data,
remotely sensed data, and biophysical data. Previous studies have
demonstrated that the land surface temperature has a signifi-
cant influence on drought, and it contributes more to the result
of a hybrid index, such as VSWI, than the reflective signal (Zhou
et al., 2010). By comparing the average error, relative error, and
correlation coefficients of the 12 drought indices combinations,
combination with VSWI involved, which considered temperature
information and has high regression accuracy, is finally selected to
calculate the ISDI.

The ISDI is suitable for large-scale (larger than provincial or

national area) drought monitoring. ISDI can monitor the drought
onset, extension, and evolution. The regional drought monitoring
effectiveness of the ISDI has been validated during all periods of
2006 in mid-eastern China. Moreover, the ISDI also offers good
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Fig. 5. Comparison of the site-scale ISDI monito

apability for monitoring spatial variations in drought condition
n local scale (same as or less than county areas). The percentage
f drought-affected areas monitored by the ISDI has good agree-

ent with the percentage observed at the agro-meteorological

ites. Though limited by the time interval of MODIS NDVI, the ISDI
onitoring results have a 16-day interval that can be implemented

n a near-real-time fashion to monitor the spatial and temporal
sults and field observations from 2000 to 2009.

changes of a drought. Future research will focus on shortening the
time interval of the ISDI results to provide operational and timely
information to users.
Using the multi-year disaster data set observed at the agro-
meteorological sites, the capability and effectiveness of the ISDI
were analyzed at the site scale across 2000–2009. The results indi-
cate that ISDI can be used to accurately monitor the occurrence of
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rought and it can characterize detailed drought categories. ISDI
as the capability to reflect both the amount of precipitation and
he severity of drought caused by lack of rainfall. The multi-year,

ulti-region quantitative field observation data (e.g. soil moisture
nd crop yield) collected at agro-meteorological sites will be used
o further determine the precision and performance of this index.
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