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An unsupervised feature learning framework based on auto-encoder is proposed to
learn sparse feature representations for remote-sensing imagery retrieval in this letter.
The low-level feature descriptors are extracted and exploited to learn a set of feature
extractors, which are then used to encode the low-level feature descriptors to generate
new sparse features. The learned feature representations are applied to aerial images
randomly selected from the University of California Merced data set. The results
indicate that the performance of our proposed framework is comparable or superior
to that of the state-of-the-art method. The framework is proved to be an effective
approach to manage the huge volume of remote-sensing data and to retrieve the desired
remote-sensing imagery.

1. Introduction

With the development of high-resolution satellite sensors, a huge volume of high-
resolution remote-sensing imagery becomes available. As a result, content-based remote
sensing imagery retrieval (CBRSIR) technology has drawn more public attention in recent
years. Most of the works in the image retrieval literature focus on feature extraction
because retrieval performance greatly depends on the power of feature representations.

In CBRSIR methods, low-level features can be primarily categorized into global
and local descriptors. With respect to global descriptors, spectral information, shape
features and texture features are commonly used. Specially, texture features, such as
Gabor features, have been widely investigated due to its periodicity, coarseness and
directionality characteristics (Aptoula 2014). Newsam et al. (2004) explored Gabor
texture features to analyse and manage large collections of satellite imagery. Unlike
global descriptors, local descriptors focus on salient regions or points. Yang and
Newsam (2013) exploited Scale Invariant Feature Transform (SIFT) to generate visual
words for bag of visual words (BOVW) representation and explored BOVW for aerial
image retrieval. It concludes that BOVW representation outperforms simple statistics,
homogeneous texture and colour histogram for most image classes due to its local,
invariance and robust properties. Chen et al. (2011) compared a variety of global and
local descriptors for very-high-resolution image scene classification, and demonstrated
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that SIFT descriptor achieved the best performance among all the evaluated features.
However, all of the features, including global and local descriptors, are hand-crafted
features where it is usually laborious and time-consuming to design these informative
and powerful feature representations.

Considering the drawbacks of global and local descriptors, there exist great
demands to concentrate on features that are learned in an unsupervised way. Hinton
and Salakhutdinov (2006) introduced a layer-wise learning algorithm to initialize the
weights of deep auto-encoder networks, which makes the training of deep neural
networks much easier. Since then, unsupervised feature learning has been widely
used for image classification and object recognition. In some recent works, unsuper-
vised feature learning was even successfully applied to remote-sensing scene classifi-
cation and object detection. In particular, Cheriyadat (2014) proposed an unsupervised
feature learning method through combining dense SIFT and Orthogonal Matching
Pursuit (Pati, Rezaiifar, and Krishnaprasad 1993) for aerial scene classification. The
proposed method essentially belongs to sparse coding and outperforms state-of-the-art
methods BOVW, spatial pyramid matching kernel (SPMK) (Lazebnik, Schmid, and
Ponce 2006) as well as the spatial extension of BOVW and SPMK (SPCK++) (Yang
and Newsam 2011). In a recent work by Zhang, Du, and Zhang (2015), the sparse
auto-encoder network, an unsupervised feature learning method, was trained with both
salient and non-salient patches to learn feature representations for aerial scene classi-
fication and achieved better performance than the approach introduced in Cheriyadat
(2014). However, the saliency detection algorithm utilized to extract salient patches
suffers from complexity and inefficiency. Many parameters such as image patch size,
sparsity penalty, the stride for feature convolution and the window size for feature
pooling should be investigated. Some other similar works can be found in Cheng et al.
(2015) and Han et al. (2014, 2015).

Although some recent studies have focused on unsupervised feature learning
methods for remote-sensing tasks, few works have been done on CBRSIR. The
motivation of this study lies in developing an unsupervised feature learning framework
(UFLF) based on auto-encoder to learn sparse feature representations for CBRSIR. The
proposed framework requires less parameter than sparse auto-encoder and avoids
feature convolution by using low-level feature descriptors instead of image patches
for training. For feature pooling, we use average pooling that has no window size
parameter. In terms of activation function of the hidden layer, rectified linear (ReL)
function rather than conventional sigmoidal function is selected, since it can enforce
sparsity on hidden units and reduce gradient vanishing problem (Glorot, Bordes, and
Bengio 2011).

2. Methodology

The proposed UFLF consists of four steps: (1) feature extraction, (2) unsupervised
feature learning, (3) feature encoding, and (4) sparse feature generation and pooling.
The initial step of UFLF is to extract low-level feature descriptors from the training
images. During feature learning, the extracted feature descriptors are fed into auto-
encoder network to generate a set of feature extractors. Once the auto-encoder network
is trained, the learned features can be computed by feature encoding. In the final step,
we apply soft threshold function to generate sparse features, which are then pooled to
generate the final feature representation. Figure 1 shows the overall architecture of
UFLF.

776 W. Zhou et al.

D
ow

nl
oa

de
d 

by
 [

C
hu

ny
ua

n 
D

ia
o]

 a
t 1

3:
32

 2
0 

A
ug

us
t 2

01
5 



2.1. Feature extraction

In most cases, representative image patches sampled from the entire image are used to
train the auto-encoder network to compute the feature extractors. These learned feature
extractors can be viewed as a feature mapping function that maps an image patch to a new
feature representation. To obtain the feature representation of the entire image, feature
convolution is usually needed. However, feature convolution has low computational
efficiency and the stride for feature convolution should be defined.

In this study, SIFT and dense SIFT descriptors extracted from the training images are
used to train the auto-encoder network. The motivation derives from two aspects. On the
one hand, a SIFT or dense SIFT descriptor corresponds to a local region but performs
better than raw pixels (the image patch). On the other hand, since the image is represented
by a set of local descriptors, we can obtain the new feature representations of the entire
image without feature convolution.

Once the feature descriptors of an image are extracted, it is then represented by a
feature matrix Xt¼½x1; x2; :::; xn�, where xið i ¼ 1; 2:::; nÞ is one 128-dimensional feature
vector, t is the image index and n is the number of feature descriptors.

2.2. Unsupervised feature learning

The aim of the auto-encoder network is to learn a compressed feature representation from
high dimensional feature space by minimizing the reconstruction error between the input
and output layers. The number of nodes in the input layer is equal to that of the output
layer. To reduce the dimensionality of data, the auto-encoder network reconstructs the
feature descriptor set with fewer nodes in the hidden layers. The activations of the hidden
layer are usually regarded as the compressed features. In this letter, we use a three-layer
auto-encoder network consisting of two stages, encoding and decoding. The dotted
rectangle in Figure 1 shows the structure of the auto-encoder network.

Describe X¼½X1;X2; :::;Xn�¼½x1; x2; :::; xN � as being the matrix representing the
stacked feature descriptors extracted from the training images, where n is the number of
training images and N is the number of feature descriptors. The feature matrix X is
normalized by subtracting the mean, and whitened by Zero Component Analysis (ZCA)
transform. Normalization and whitening are computed using Equations (1) and (2),
respectively.

Figure 1. Overview of the proposed remote-sensing imagery retrieval framework.
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�X ¼ X� 1

N

XN

i¼1

xi (1)

Xwhitening ¼ UUT

ffiffiffiffiffiffiffiffiffiffiffi
Sþ ε

p (2)

Here, �X is the result of normalization and Xwhitening is the result of whitening. U and S
(a diagonal matrix) are matrices consisting of the eigenvectors and the eigenvalues of the
covariance matrix of �X, respectively. ε is a constant close to 0, and T is transpose
operation.

During the encoding stage, the input Xwhitening is mapped to the activation value h1 of
the hidden layer through the ReL activation function.

h1 ¼ f ðW1Xwhitening þ b1Þ (3)

Here, W1 and b1 are the weight matrix and the bias term of the encoding stage,
respectively. f ðxÞ is the ReL activation function of the hidden units and it is defined as
f ðxÞ ¼ maxð0; xÞ. During the decoding stage, the output h2 of the network is obtained by
mapping h1 through a non-linear activation function.

h2 ¼ gðW2h1 þ b2Þ (4)

Here, W2 and b2 are the weight matrix and the bias term of the decoding stage,
respectively. gðxÞ is the softplus activation function of the output layer and it is defined as
gðxÞ ¼ lnð1þ exÞ. The sigmoidal function f ðxÞ ¼ 1=ð1þ e�xÞ and the linear function
f ðxÞ ¼ x are also two commonly used activation functions.

The features are learned by minimizing the overall reconstruction error in
Equation (5).

LðW; bÞ ¼ 1

2
Xwhitening � h2

�� ��2 þ λ
2

Wk k2 (5)

Here, the first term is a square error term, and the second term is a regularization term
that helps prevent over-fitting. λ is the weight decay parameter. The network is trained by
optimizing Equation (5) with respect to W1;W2; b1; b2. In this letter we use Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) to optimize this problem.

2.3. Feature encoding

Given the weight W1 and the bias b1, we encode the low-level feature descriptors to
generate new feature representations using Equation (6).

Y ¼ f ðW1Xt þ b1Þ (6)

Here, Y are the learned feature representations. f ðxÞ is the ReL activation func-
tion, and Xt is the feature matrix of the image with index t, which is preprocessed
with the same mean and whitening matrices as those used in the auto-encoder training
process.
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2.4. Sparse feature generation and pooling

Sparsity can be defined as having few non-zero components. In this letter, we obtain
sparse feature representations in two steps. We first use ReL function as the activation
function to impose sparsity on the hidden units. Then we proceed to enforce more sparsity
using the soft threshold function. Given the learned feature set Y, we generate a sparse
feature representation Z with Equation (7).

Z ¼ ½Zþ;Z�� (7)

Here, Zþ ¼ maxf0;Y� αg and Z� ¼ maxf0; α� Yg are the positive and negative
weights above and below the threshold α that enforces sparsity. ‘Y� α’ or ‘α� Y’ means
the subtraction operation between α and each element of Y, and the result is also a matrix.

With the sparse feature set Z, we then apply average pooling to obtain the final feature
representation for image retrieval. The equation is shown in Equation (8).

F ¼ ½f þ; f �� ¼ 1

N

XN

i¼1

½zþi ; z�i � (8)

Here, F is the final feature representation. zþi and z�i are the ith column vectors of
Zþ and Z�, f þ and f � are the pooled feature vectors of Zþ and Z�, respectively.

3. Experiments

In this section the University of California (UC) Merced data set is used in our experi-
ments, and the performance of our UFLF is demonstrated.

3.1. Data set and experimental setup

3.1.1. Data set

UC Merced data set contains 21 challenging scene categories with 100 samples per class.
Each image has 256 × 256 pixels with a resolution of 30 cm. For computational
efficiency, we randomly selected 10 image categories to constitute the retrieval data set.
Figure 2 shows some example images of the selected image categories.

3.1.2. Experimental setup

In our experiments the training images are randomly selected from each image category
with 50 images per category for SIFT descriptors, and 25 images per category for dense
SIFT descriptors. For SIFT we use the original algorithm by Lowe (2004), and for dense
SIFT we set the sampling window size to 16 × 16 and the step size to 8 pixels. For ZCA
whitening we set the constant ε to 0.1, and for the weight decay parameter we set λ to
0.001. For the number of hidden units we set it to 400 and for the sparsity parameter α
several values (0.035, 0.05, 0.2, 0.4, 0.6, 0.8 and 1.0) are considered.

Here we also explore different configurations of BOVW representation against which
our UFLF is compared. For BOVW representation, k-means clustering using Euclidean
distance measure is applied to generate the codebook with different number of clusters
(200, 400, 600, 800, 1000, 1200 and 2000).
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To measure the similarity between the query image and other images in the database,
L1 (City Block distance) and L2 (Euclidean distance) distances are used to evaluate the
similarity for sparse features generated by our UFLF and histogram intersection is used
for BOVW representation.

3.2. Results

To evaluate the performance of UFLF, we conduct several experiments. Figure 3(a) shows
the average precision over all 10 classes for the two feature extraction strategies with
varying sparsity values. UFLF based on SIFT descriptors is shown to perform better than
UFLF based on dense SIFT descriptors for every sparsity value. This makes sense because
SIFT descriptors are extracted using saliency-based sampling strategy, which can capture
the salient features of the image, while dense SIFT descriptors are extracted using grid-
based sampling strategy, which can only capture the features of the whole scene. In the
following experiments, UFLF refers to UFLF based on SIFT descriptors. Overall the
performances of UFLF using L1 and L2 are comparable. For SIFT-based extraction
strategy, we found the similarity measure using L1 has slightly better performance than
that using L2, while the opposite conclusion is obtained for dense SIFT-based extraction
strategy except for sparsity 1.0.

Figure 2. Some example images from UC Merced data set (Yang and Newsam 2013): (a) airplane,
(b) beach, (c) chaparral, (d) forest, (e) freeway, (f) harbour, (g) intersection, (h) mobile home park,
(i) overpass and (j) parking lot.
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Three activation function groups are also considered in this study, namely ‘ReL +
softplus’, ‘sigmoid + x’ and ‘abs + softplus’. The two functions of each group are the
activation functions of the hidden layer and the output layer, respectively. In Figure 3(b),
we show the performance of UFLF using these activation function groups. Overall, the
group ‘ReL + softplus’ achieves higher average precision over all 10 classes compared to
the group ‘sigmoid + x’. The promising results are probably because the ReL activation
function can enforce the sparsity of hidden units and reduce the gradient vanishing
problem. To validate this view, the function group ‘abs + softplus’ is also investigated
for two reasons: (1) the two function groups have the same activation functions of the
output layer; and (2) ReL and abs have similar function formulas.

Figure 4(a) indicates the best results (sparsity 0.4) for sparse features as well as the
results for non-sparse features using L1 and L2 similarity measures. Non-sparse features
are the learned features without using the soft threshold function to enforce more sparsity
as mentioned in section 2.4. It is shown that sparse features achieve better performance
than non-sparse features using the same similarity measure.

Figure 3. The average precision of UFLF over 10 classes with varying sparsity values (a) based on
SIFT and dense SIFT and (b) using the three activation groups described in the text.

Figure 4. Graphs of precision against recall for (a) sparse feature against non-sparse feature and
(b) BOVW with varying codebook size (the numbers in the legend are the codebook sizes).
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The remainder of this section compares the performance of our UFLF to that of the
BOVW representation. BOVW is a state-of-the-art method in the image retrieval litera-
ture. Figure 4(b) shows the performance of BOVW representation with a range of code-
book sizes. It indicates that 1000 is the optimal codebook size. Figure 5 shows the
performance of UFLF and BOVW for each image category. It can be seen that UFLF
has better performance for most of the image categories. The last bin in the figure denotes
the average precision over all image classes, and it indicates that the average precision
generated by UFLF is higher than that by BOVW.

4. Conclusions

We presented a UFLF that can map low-level feature descriptors to new and sparse feature
representations. Unlike previous works that focused on designing robust feature representa-
tions, UFLF can learn sparse features in an unsupervised way. We demonstrated that UFLF is
more effective than BOVW using several performance metrics, and UFLF based on SIFT
descriptors outperforms UFLF based on dense SIFT descriptors. We also compared three
activation function groups used for UFLF to validate the advantages of ReL activation function.

Disclosure statement
No potential conflict of interest was reported by the authors.
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Figure 5. Comparison of the retrieval performance of UFLF and BOVW representations for
different image classes.
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