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ABSTRACT
The land cover classification of very high-resolution (VHR) remote 
sensing images is a challenging task. VHR images depict many 
complex objects with various shapes in complicated contexts. The 
deep learning-based method is a solution for such dif- ficult task 
and feature extraction. Nevertheless, this method cannot efficiently 
deal with images with complex scene structures. An improved 
object-based convolutional neural network (IOCNN) is designed to 
classify VHR images with zone division and convolutional position 
sampling techniques in this study. The method can achieve the best 
performance of each zone at its own optimized scales. Based on 
multi-scale convolutional deep features extracted from VHR 
images, the objects with irregular shapes can be classified using 
the approach. In this study, the zone-level scale adaption and multi- 
scale recognition of complex objects are achieved. The perfor
mance of IOCNN is compared with the state-of-the-art methods 
for feature extraction, including five object-based CNN approaches 
and two fully convolutional networks (FCNs). The results show that 
the classification performance of IOCNN is considerably stronger 
than that of state-of-the-art methods. The overall accuracies of the 
land cover classification in IOCNN are 91.65% and 93.49% on two 
tested images. The results demonstrate the practicability of IOCNN.
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1. Introduction

Land cover classification is an essential but arduous task in remote sensing applications, 
especially for very high-resolution (VHR) images. Conventional land cover classification 
approaches using object-based image analysis (OBIA) require image segmentation, fea
ture selection, classifier training, and image classification, in which objects are meaningful 
segmented units in images (Blaschke (2010); Blaschke et al. (2014); Chen et al. (2018); Ma, 
Tengyu, and Manchun (2018)). Images can be classified by pre-trained classifiers (Bayesian 
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classifiers, random forests, and support vector machines) based on selected features, such 
as object textures, contexts, spectral information, shapes, and other morphological fea
tures (Ma et al. (2017); Mui, Yuhong, and Weng (2015); Sun et al. (2019)). To date, various 
methods have been developed and applied in diverse study areas, including urban areas 
(Fu et al. (2019); Shao et al. (2019a); Zhang et al. (2018a)) and natural areas (Chen et al. 
(2017); He et al. (2019a), (2019b))). However, classifying remote sensing images with 
complex objects and land surfaces becomes more challenging, as the image resolution 
becomes finer, especially for aerial and satellite images (Zhao and Du (2016)).

Deep learning has produced a new paradigm in the field of remote sensing (Ma et al. 
(2019); Heydari and Mountrakis (2019)). Fully convolutional networks (Ronneberger, 
Fischer, and Brox (2015); Long, Shelhamer, and Darrell (2015); Badrinarayanan, Kendall, 
and Cipolla (2017)) and convolutional neural networks (LeCun, Bengio, and Hinton (2015)) 
with multiple hidden layers have led to dramatic progress in remote sensing image 
applications, such as image fusion (Shao and Cai (2018); Song et al. (2018)), imagery 
registration (Hughes et al. (2018); Merkle et al. (2017); Shao et al. (2020b)), scene classifica
tion (Zou et al. (2015)), object detection (Zhong, Han, and Zhang (2018); Shao et al. 
(2019b), (2019c), 2020a)), land cover and land use classification (Liu, Zhang, and Eom 
(2016); Pan, Shi, and Xia (2018); Zhang et al. (2019); Zheng et al. (2020)), semantic 
segmentation (Maggiori et al. (2016); Zhang et al. (2017)), and OBIA (Liu and Abd- 
Elrahman. (2018); Zhao, Du, and Emery (2017)). Deep learning techniques have been 
particularly effective in land cover classification and OBIA, in which abstract deep features 
hidden in images can be extracted and fused. Deep features extracted by deep learning 
are more powerful than artificially designed features used in traditional classification 
approaches (Zhao and Du (2016); Zhang et al. (2018b)). FCNs with end-to-end structures 
can precisely predict labels of every pixel in images and have achieved progress in 
semantic segmentation. In the field of remote sensing, FCNs are often used to detect 
objects from remote sensing imageries (Wurm et al. (2019)). Researchers have attempted 
to use FCNs in hyperspectral image classification (Zheng et al. (2020)). In the field of CNNs, 
some previous studies have generated multi-scale features by combining single-scale 
features extracted by CNNs and subsequently demonstrated high classification accuracies 
and robustness (Zhao and Du (2016); Zhao et al. (2015)). Various CNN-based applications 
of remote sensing have attained progress by optimizing network structures (Chen, Zhao, 
and Jia (2015); Marcos et al. (2018); Zhu et al. (2018)), introducing multi-source data into 
VHR image processing (Pan, Shi, and Xia (2018); Chen, Huang, and Bing (2017); Zhang 
et al. (2017)), dynamic monitoring of time series (Cai et al. (2018)), and reducing the 
number of training samples (Pan, Shi, and Xia (2018)).

Although object-based CNNs (OCNNs) has greatly improved the overall accuracy of the 
land cover classification of VHR images (Mui, Yuhong, and Weng (2015); Fu et al. (2018); 
Huang, Zhao, and Song (2018); Lv et al. (2019), Lv et al. (2018)); Tong et al. (2020); Zhou 
et al. (2020)), OCNNs still suffer from performance issues at fine scales. Specifically, the 
classification accuracy at the object and zone levels can vary greatly.

At the object level, Most OCNN methods fail to consider the influence of the convolu
tional positions (centre points of convolutional windows or respective fields) on classifica
tion performance. Moreover, the research focusing on the generation strategies of 
convolutional positions is rare. Figure 1 illustrates how CNNs use convolutional positions 
to extract sub-image blocks as the basic units.
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Selection strategies for convolutional positions have changed over time along with the 
advancements in CNN-based methods. The pixel-based CNN considers pixels as convolu
tional positions and requires massive runtime and a huge amount of storage space (Zhao 
and Du (2016)), while the superpixel-based CNN utilizes the centres of super-pixels (a 
segmenation result with samiliar object shapes) as the convolutional positions (Lv et al. 
(2018)). Object-based CNN can further reduce the number of convolutional positions by 
utilizing multiple convolutional positions within objects (Zhang et al. (2018b); Lv et al. 
(2018); Zhou et al. (2020)).

However, existing strategies for selecting convolutional positions are mostly unreliable 
because of the uncertainty of sample locations. Some research directly takes centroids of 
objects as convolutional positions, regardless of the shape of the objects (Fu et al. (2018); 
Lv et al. (2019); Zhang et al. (2020); Chen, Ming, and Xianwei (2019)). In other research, 
randomly generated positions in objects are used as the convolutional positions (Lv et al. 
(2018)). To address this issue, some object-based morphological methods are proposed to 
generate multiple convolutional positions in objects to address this issue (Zhang et al. 
(2018b)). Nevertheless, these existed morphological methods still cannot represent the 
whole objects. The generation methods cannot select reasonable and suitable convolu
tional positions for OCNNs. An ideal algorithm for convolutional position sampling needs 
to satisfy the following conditions: the number of positions within an object should be 
precisely controlled by users; the positions cannot be located on the boundary of the 
object; and the positions are expected to be evenly distributed within the object. Thus, 
a binary tree sampling method (the process of sampling is the process of selecting 
convolutional positions) based on object morphological attributes is used to solve the 
problem in this study.

The essence of the zone-level issue is the problem of scale effects. The zone-level issue 
is that CNN-based methods typically study remote sensing images at a single scale 
(objects in industrial, agriculture, and residential scenes are often studied at the same 
scale in a remote sensing image), ignoring the hierarchical and stratified natures of 
geographic phenomena in VHR images. Besides, the scale effect remains a challenge in 
OCNNs. The scale effect in remote sensing image classification implies that the classifica
tion results tend to vary considerably at different scales (window sizes of the study). 
Objects vary widely in terms of size and have different optimized scales. Scale effect at 

Figure 1. The convolutional positions in different CNN methods for remote sensing image 
classification.
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zone-level is a result of the interaction of the object-level scale effect and the spatial 
distribution of the objects in the image. Given this condition, OCNNs cannot achieve the 
desired classification performance of remote sensing images by using single scales. In 
contrast, multi-scale methods can precisely identify objects. Nevertheless, these methods 
lead to a compromise between different optimized scales (Lv et al. (2018)). According to 
Tobler’s First Law of Geography (everything is related to everything else, but near things 
are more related to each other), geographical objects or attributes are related to one 
another. In areas where the spatial distribution of geographical objects is heterogeneous, 
the scale effects at different zones can be diverse and the optimized scales for each zone 
may vary. Therefore, zone division is necessary and can be used in VHR images to achieve 
zone-level scale-adaptive classifications.

This study aims to design a land cover classification method to address the issues 
existing in OCNNs. In particular, the method aims to achieve the following goals: 1) zone 
division is proposed for the pre- and post-processing of VHR image land cover classifica
tions; 2) a binary tree sampling (BTS) method is applied to select the appropriate 
convolutional positions; 3) OCNN are combined with the zone division and the BTS to 
devise a land cover classification method for VHR images.

2. Study area

Two study areas in California, namely, San Leandro Bay suburbs on the west coast of 
Auckland (Figure 2a) and Washington Lake located on the southwest of Sacramento 
(Figure 2b), were selected for this study.

The two VHR images were captured on 17 August 2018 (Auckland) and 3 April 2018 
(Sacramento). Both images were downloaded from Google Earth with a spatial resolution 
of 0.6 metres and three bands. The Auckland image contains 8,185� 7,850 pixels, while 
the Sacramento image contains 4,960� 6,971 pixels. There is obvious spatial aggregation 

Figure 2. Studied VHR images.
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phenomenon of geographical objects in the two images. Each image shows three types of 
zones including residential, natural, and industrial zones. There are clear boundaries 
among these zones. In addition, the categories of objects in zones very greatly. The 
dominant categories of different zones in the study areas are shown in Table 1.

The samples were selected from manually labelled data by using a stratified random 
scheme. As recommended by previous researchers (Zhang et al. (2018b); Chen et al. 
(2016)), the samples should be divided into two sets, namely, a training set containing 
62.5% of all samples and a validation set containing the remaining 37.5% samples. 
Approximately 1,600 samples were detected per category for training and validation, 
which is sufficient to train the CNN models. The sample size of each category is shown in 
Table 2.

A total of 12,600 samples (7,875 training samples and 4,725 validation samples) in the 
Auckland image and 15,762 samples (9,851 training samples and 5,911 validation sam
ples) in the Sacramento image were obtained. The sizes of each category are listed in 
Table 2. Besides these samples for training and validation, 3,884 and 4,813 samples were 
also collected independently for the two Auckland and Sacramento to supplement the 
accuracy assessment. The examples of the categories in the two images are shown in 
Figure 3.

3. Methods

The workflow of IOCNN for the VHR image land cover classification is illustrated in 
Figure 4. IOCNN is a supervised classification method. The three key components of 
IOCNN are pre-processing (zone division, training sample selection, and testing data 

Table 1. The dominant categories of geographical objects in each zone.
Zone Auckland Sacramento

Residence Asphalt roads, cement roads, Residential 
buildings, shadow, vegetation

Asphalt roads, bare soil, cement roads, Residential 
buildings, shadow,vegetation, water bodies

Industry Asphalt road, parking space, Residential 
buildings, factory buildings, shadow, 
vegetation

Asphalt roads, bare soil, cement roads, factory 
buildings, shadow, trucks, vegetation, water bodies

Nature Asphalt roads, vegetation, water bodies, 
wetlands

Asphalt roads, bare soil, vegetation, water bodies, 
wetlands

Table 2. The training and validation data for two studied images.
Auckland Sacramento

Category Training Validation Training Validation
Asphalt roads 1,018 582 1,254 746
Bare soil – – 996 604
Cement roads 746 454 1,002 598
Factory buildings 985 615 978 620
Parking space 903 597 – –
Residential buildings 1,011 589 973 627
Shadow 993 607 1,128 672
Trucks – – 929 543
Vegetation 895 505 1,145 655
Water bodies 1,010 590 1,001 599
Wetlands 314 186 445 247
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Figure 3. Examples of land cover categories in each image.

Figure 4. IOCNN workflow for VHR image land cover classification.
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selection fusing BTS) (Figure 4a), training CNN models and predicting object labels by the 
CNN models (Figure 4b) with the aid of a majority-voting system, and merging optimal 
multi-scale results into a final result (Figure 4c).

Zone division and BTS methods are the contributions of the proposed IOCNN. In the 
pre-processing step, an image is segmented into several zones, each with different land 
cover types, by using the image stratified zone division method (Xu et al. (2019)). Each 
zone is subsequently segmented into objects in the form of highly homogeneous sub- 
image units. The number of convolutional positions for each object is computed based on 
the geometric properties of the object. BTS is then used to select the convolutional 
positions from each object. With the generated convolutional positions in the pre- 
processing phase by BTS, the convolutional positions can then be labelled by the pre- 
trained CNN and provided multiple labels. Then, the objects can be classified by using the 
majority-voting scheme for the multiple labels. Finally, the classification results of each 
zone at their optimized scales are merged into a final classification map.

3.1. Image stratified zone division

Thanks to the inspiration about zone division (Zhou et al. (2018a)), the multi-resolution 
segmentation (MRS) method is used in zone division and object generation. The VHR 
image segmentation entailing multiple land cover types requires a suitable scale para
meter, which is determined by the size of the smallest objects as studied of interest in the 
study area (Ming et al. (2015); Ma et al. (2015)). Thus, most objects in the studied areas are 
over-segmented in terms of its scale parameter. However, there are diverse scale effects in 
different zones. In other words, it is necessary to avoid to set the scale parameter to 
accommodate the smallest objects. Therefore, the image stratified zones division method 
is essential for the image segmentation (Xu et al. (2019); Zhou et al. (2018b)). The image 
zone division method involves colour space conversion, grey level co-occurrence matrix, 
and MRS. The flowchart of the image zone division is shown in Figure 5.

Figure 5. Flowchart of the image zone division.
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Remote sensing images can be divided into dominant zones, such as natural, 
industrial, and residential zones. With the colour space conversion method, an RGB 
image can be initially converted into an HSV image. The hue band of the HSV image 
which can differentiate different objects is then used with the grey level co- 
occurrence matrix (GLCM) to generate texture feature maps. The original RGB 
image is subsequently stacked with several texture maps optimized by their obvious 
zone boundaries to form a new image. MRS is applied to the zone division of the 
stacked image with the optimal scale parameter, appropriate compactness, and 
shape values. After MRS segmentation, the course zone objects can be generated. 
They are slightly over-segmented for zone-division and under-segmented for ground 
objects. Spectral difference segmentation is applied to the result of MRS to merge 
objects with similar spectral and related features. The parameters of the spectral 
difference segmentation are set as eCognition.

3.1.1. Colour space conversion
The first step of the zone division is to convert the image from the RGB model to the 
HSV model to improve the coverage information of the GLCM. Conventionally, 
images are presented using the RGB model in computer vision. RGB, presenting 
the three primary colours, can directly generate almost all human visible colours, 
but it has no direct relation with the three attributes of hue, saturation, and value. 
The HSV model can directly show the relationships between colours and each of the 
attributes of three bands, and provides better results for image classification com
pared with the RGB model (Xu et al. (2019); Rabiee, Kashyap, and Rasoul Safavian 
(1996)). For example, the green objects (vegetation) in the study area usually have 
different values in the RGB model. Similar colour spectra in RGB may correspond to 
different objects. After colour space conversion, these green colours in the RGB 
model can effectively match the similar value of the hue band. The hue band can 
identify image information from the HSV model. Furthermore, GLCM is necessary to 
generate all the other required information for the zone division method in this 
study.

3.1.2. Gray level co-occurrence matrix (GLCM)
Texture is formed by the repeated occurrence of grey level distribution in spatial position. 
GLCM is a widely used texture analysis approach, with the assumption that spatial 
distributions of pixels in images contain image texture information (Haralick and 
Shanmugam (1973)). GLCM is defined as the joint probability distribution of two grey 
pixels at distance d. The matrix approach can be directly used as a feature to distinguish 
textures; however, statistical texture features derived from GLCM, including feature para
meters, mean, homogeneity, entropy, are generally preferred. GLCM is only used to 
improve the quality of dividing zone and not used to train the CNN model .

3.1.3. MRS
MRS is used to perform pixel-level bottom-up region-growing segmentation to identify 
objects and their hierarchical structures (Rabiee, Kashyap, and Rasoul Safavian (1996)). The 
segmentation follows a minimum heterogeneity principle, i.e. only adjacent pixels similar 
in the spectra are united and rendered with the same labels. The feature maps (mean, 
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entropy, or homogeneity) generated by GLCM method from the original RGB images are 
merged into a new image for zone division. Then, the original image in each zone is 
subsequently segmented into objects by MRS based on the above divided zones. These 
objects are then analysed and assigned convolutional positions, as discussed in the 
following section.

3.2. Binary tree sampling (BTS)

BTS, as a contribution of IOCNN, is applied in this study to generate appropriate convolu
tional positions based on the idea of binary trees. The BTS method is applied only to the 
testing phase in the study. Some terminologies need to be clarified before the description 
about BTS. The fundamental operation of BTS is to clip an object into two new objects. 
The original object before the clip is called the ’parent object’, while the two new objects 
after the clip are called the ’child objects’. A root object can be a parent object, but not 
a child object.

3.2.1. Convolutional position number analysis
The number of convolutional positions for a root object depends on its area and shape 
index. Extremely large or small objects are rare. For extremely small objects, one position 
is sufficient. As the area increases, the number of positions also increases, although the 
two are not linearly related. As the internal of large areas tend to be homogeneous, the 
number of positions should no longer increase when the area reaches a certain level (a 
user-defined threshold). Thus, the object area can be divided into three intervals: small 
area, middle area, and large area.

The shape index refers to the smoothness of an image object’s border and is defined as 
the perimeter of the object divided by four times the square root of its area (Lv et al. 
(2019)). The smoother the border of an object is, the lower its shape index will be. 
Moreover, the more winding the border of an object is, the higher its shape index will 
be. Objects with low shape index require few convolutional positions. By contrast, objects 
with high shape index need more convolutional positions. Similar to how the area is 
handled, the shape index of an object can be divided into three intervals based on a user- 
defined threshold.

A nine-intersection model is used to calculate the number of convolutional positions in 
the root object based on the double-limitation strategy, namely, the area and shape 
index. Then, on the basis of the three intervals defined by the area and the shape index of 
the object, the convolutional position number can be calculated using a coordinate 
system corresponding to the sample number analysis theory (Figure 6).

The BTS method clips a parent object into two child objects and recursively clip these 
child objects until the point number meets the requirements specified by Equation 1, 
forming a binary tree. 

S nð Þ ¼
Ps1 ; n ¼ 1

S 1
a n
� �� �

þ S a� 1
a n

� �� �
; n> 1

�

(1) 

where n is the number of convolutional positions in the root object and a is the area of 
a child object divided by the area of its parent object. In addition, S(n) is a kernel function 
for clipping the root object. The BTS method clips an object using a divide-and-conquer 
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strategy. The kernel function S(n) returns the centroid Ps1 of the child object whenn is 1. 
The centroids of the inseparable child objects are used as the convolutional positions.

3.2.2. Binary tree-based clipping algorithm
The workflow contains two steps. First, a parent object is clipped into two child objects by 
the minimum bounding rectangle (MBR) and the same step is recursively applied to each 
child object until the required number of samples is reached. Second, centroids of child 
objects are extracted and considered as the candidates of the convolutional positions. The 

Figure 6. Theory of position number analysis.

Figure 7. Workflow of the BTS method.
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locations of the candidates are then fine-tuned to generate the final positions of the 
convolutional positions. The flowchart of the BTS method is shown in Figure 7.

Fine-tuning is necessary for two reasons: 1) the candidate positions can be too close to 
the boundaries of the objects; and 2) in certain cases, the candidates may not be evenly 
distributed in the objects. To address these issues, the fine-tuning is an iterative process. 
In each iteration, Voronoi polygons are generated based on the positions of the candi
dates and the boundaries of the objects. The centroids of the resulting Voronoi polygons 
are considered as the new candidates. This process is repeated on the candidates for five 
times.

3.3. Convolutional neural networks (CNNs)

A CNN contains multiple layers including convolutional layers and pooling layers (LeCun, 
Bengio, and Hinton (2015)). This complex structure enables CNNs to extract deep features 
from VHR images. Thus, the segmented objects are identified based on the the deep 
features.

The single CNN model used in the study adopts the same structure as AlexNet with five 
convolutional layers, three max-pooling layers, and two fully connected layers (Krizhevsky, 
Sutskever, and Hinton (2012)). Figure 8 shows the detailed structure of the CNN. The 
training data is reshaped into a 227� 227 matrix as the input layer, which is subsequently 
transformed into five convolutional layers (conv1 to conv5 in Figure 8) with different 
filters. Similarly, the testing data extracted by BTS is fed into the pre-trained model. The 
number and size of the filters used for each convolutional layer are shown in Figure 8. All 
max-pooling layers use the same filter with a window size of 3� 3. The function rectified 

Figure 8. Framework of CNNs in this study.
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linear unit is set as an activation function. At the end of this convolutional structure, 
softmax function is selected as the classifier. As opposed to the single-scale CNNs that are 
based on single-window sizes, multi-scale CNNs (MCNNs) are based on feature fusion of 
multiple single-scales. The deep features from two or three sing-scales with the highest 
overall classification accuracy (OA) are combined as multi-scale features. Then, the fully 
connected layers are retained based on the multi-scale features.

3.4. Accuracy assessment

A confusion matrix is used to access the accuracy of the VHR image land cover classifica
tion. Confusion matrices provide a comprehensive means such as kappa coefficient (Mez 
(1978)), overall accuracy (OA), and f1-score (f1) to evaluate the performance of land cover 
classification. The N categories of objects in the classification results represent and 
validate the proportion of objects correctly matched to the ground truth in an N� N 
matrix. OA, denoted as P0, is the proportion of correctly classified objects. For a total of 
n samples, if the number of correctly predicted samples is S, then P0 is S/n. Here, PA ¼
TP= TP þ FNð Þ and UA ¼ TP= TP þ FPð Þ, where PA is product accuracy, UA is user accuracy, 
TP is the number of positive samples to be correctly classified, FN is the number of positive 
samples misclassified into be negative, and FP is the number of negative samples 
misclassified into be positive. The kappa is described in Equation 2 and 3. 

kappa ¼
P0 � Pe

1 � Pe
(2) 

where Pe is calculated by 

Pe ¼

Pc
i¼1 aibi

n� n
(3) 

where a1; a2; . . . ; ac is the actual number of samples in each category, and b1; b2; . . . ; bc is 
the predicted number of samples for each category (Mez (1978)).

The equation to calculate f1 is shown in Equation 4. 

f 1i ¼ 2�
UAi � PAi
UAi þ PAi

(4) 

where i is the ith category, and f1i is the f1 score of the ith category.

3.5. Comparative methods

The control methods are applied to the same images to evaluate the performance of the 
land cover classifications of the proposed IOCNN. Five OCNN methods including OCNN1 

(Zhang et al. (2018b)), OCNN2 (Lv et al. (2018)), OCNN3 (Zhou et al. (2020)), OCNN4 (Fu et al. 
(2018); Lv et al. (2019); Zhang et al. (2020); Chen, Ming, and Xianwei (2019)), OCNN5 (Tong 
et al. (2020)) are selected as the comparative methods. In addition, because of the 
advance of FCNs for semantic segmentation in computer vision in recent years. On this 
basis, U-Net (Ronneberger, Fischer, and Brox (2015)) and SegNet (Badrinarayanan, Kendall, 
and Cipolla (2017)) are also selected as the comparative methods in this study.
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3.6. Study environment and configuration

The MRS method in eCognition is adopted in this study. The deep learning library 
TensorFlow is used to run the CNNs on a desktop computer equipped with an NVIDIA 
RTX2080TI GPU, an Inter(R) Core i7-7820X CPU, and 32 GBs of RAM. The BTS method is 
performed on the same computer.

For training CNN models, the dropout value is set to 0.5. The learning rate value is 0.01. 
The number of epochs is set to 60 based on trial and error; that is the model is expected to 
converge within only 60 epochs. The Gradient Descent Optimizer is used in IOCNN and 
the comparative methods in the study. The methods are tested at a single scale. Then, an 
OCNN method and IOCNN are used to make a series of classifications at multiple scales. 
The scale is selected relatively to the size of ground objects in the study area. Objects vary 
widely in terms of size. For example, the biggest ground object (an industry building) in 
our image covers approximately 4100 m2. However, the smallest artificial object (tracks 
and a few cement roads) covers about 50 m2 shown in Figure 3. 3. Therefore, we select 25 
pixels (about 15 metres) as the side length of the smallest window, and 105 pixels (about 
63 metres) as the side length of the largest window. We believe that they can contain 
enough background information for small and large ground objects. Because there are 
still a large number of ground objects whose size is between the smallest objects (trucks 
and cement roads) and largest ground objects (factories and bare soil), we select a series 
of window sizes, i.e. (25� 25, 35� 35, 45� 45, 55� 55, 65� 65, 75� 75, 85� 85, 
95� 95, 105� 105), reshaped into a 227� 227 matrix as input layer. The same para
meters, including learning rate and dropout value, are used for the CNN and MCNN. The 
epoch number for training the MCNN model is set to 100, which is the only difference in 
the parameter setting between the single CNN model and the MCNN model. For training 
FCN models, nine and eight labelled patches with 585� 585 pixels are used as the 
training samples of the Sacramento and Auckland images, respectively. The training 
data are also applied with concepts from the augmentation strategy. The iteration 
number of training models is 5,000, and the learning rate is 0.001. The accuracy assess
ment data of the FCNs are the same as OCNNs’.

4. Classification results and analysis

The classification performance of the proposed IOCNN is evaluated on two images. The 
classification results and the divied zones are analysed for the scale effects. The proposed 
method is compared with five OCNN methods and two FCN methods. The classification 
results are evaluated by OA, kappa, and f1. The proposed IOCNN achieves desired land 
cover classification results. Many classifications are also conducted at different scales, such 
as single scales and multiple scales (i.e. double and triple scales). The multi-scale results 
are the feature fusion of single scales. The combinations of multi-scales with the highest 
accuracies are presented in this paper.

4.1. Single scale classification results

The OAs for each OCNN method at single scales for Sacramento and Auckland are shown 
in Figure 9, respectively. The IOCNN achieves the highest classification accuracies 
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compared with other state-of-the-art methods. The IOCNN reaches the best classification 
result at the optimized scale of 25 for Sacramento (OA: 88.93%, kappa: 0.8783, f1: 0.8860) 
and the optimized scale of 65 for Auckland (OA: 91.30%, kappa: 0.8933, f1: 0.8953), 
respectively. OCNN1, OCNN2, OCNN3, OCNN4, and OCNN5 get the best classification at 

Figure 9. Single scale classification results.

Table 3. F1 of per category for Sacramento.
Results IOCNN OCNN1 OCNN2 OCNN3 OCNN4 OCNN5 U-Net SegNet

Optimized scales 25 35 45 45 45 105 – –
OA(%) 88.93* 87.58 82.26 65.16 83.34 59.13 72.60 73.58
kappa 0.8783* 0.8585 0.7978 0.6133 0.8104 0.5338 0.6863 0.6961
Average f1 0.8860* 0.8700 0.8219 0.7133 0.827 0.6036 0.6888 0.6661
Asphalt roads 0.8844* 0.8831 0.8304 0.8028 0.8417 0.6167 0.8046 0.8058
Bare soil 0.9424* 0.9403 0.9191 0.8905 0.9087 0.8129 0.9104 0.9127
Cement roads 0.8101* 0.7906 0.7279 0.5312 0.7409 0.3952 0.4875 0.5573
Factory buildings 0.8968 0.9091* 0.8988 0.7897 0.8812 0.8233 0.7564 0.6168
Residential buildings 0.8703 0.8898* 0.8348 0.6431 0.8585 0.5265 0.7563 0.4290
Shadow 0.9103* 0.8580 0.7659 0.5803 0.7759 0.3547 0.5441 0.8580
Trucks 0.9249* 0.8661 0.8067 0.5234 0.7980 0.4625 0.3149 0.2540
Vegetation 0.8643* 0.8050 0.7220 0.6243 0.7692 0.4319 0.6861 0.7631
Water bodies 0.9566 0.9672* 0.9157 0.9178 0.9350 0.7905 0.8324 0.8224
Wet land 0.8000* 0.791 0.7976 0.8295 0.7609 0.8221 0.7956 0.6421

Table 4. F1 of per category for Auckland.
Results IOCNN OCNN1 OCNN2 OCNN3 OCNN4 OCNN5 U-Net SegNet

Optimized scales 65 55 65 45 85 105 – –
OA(%) 91.30* 89.60 85.32 77.01 86.15 69.16 72.39 80.45
kappa 0.8933* 0.8727 0.8198 0.7250 0.8304 0.6306 0.6594 0.7527
Average f1 0.8953* 0.8738 0.8227 0.7892 0.8282 0.6733 0.7032 0.7780
Asphalt roads 0.9293* 0.9197 0.8970 0.8736 0.8990 0.7666 0.8007 0.8489
Cement roads 0.8163* 0.7989 0.6779 0.6069 0.6494 0.2632 0.3326 0.6748
Factory buildings 0.8872* 0.8476 0.8545 0.8064 0.8516 0.7770 0.7059 0.6400
Residential buildings 0.9395* 0.9272 0.8927 0.7759 0.9081 0.7233 0.7238 0.7177
Shadow 0.9068* 0.896 0.7769 0.7506 0.8320 0.5332 0.5861 0.8941
Vegetation 0.8457* 0.7992 0.7056 0.7991 0.7052 0.5539 0.6965 0.8104
Water bodies 0.9670* 0.9670 0.9516 0.9605 0.9223 0.9060 0.9308 0.9242
Wet land 0.8540* 0.8172 0.7955 0.8316 0.8132 0.8670 0.8243 0.7644
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the optimized scales of 35, 45, 45, 45, and 105 for Sacramento, and optimized scales of 55, 
65, 45, 85, and 105 for Auckland, respectively.

Among the eight methods, the IOCNN and OCNN1 methods produce the desirable 
classification results. The classification results of OCNN3 and OCNN5 are the worst as 
shown in the Figure 9. The classification results for each category of these OCNN methods 
at their optimized scales for the two studied images are shown in Tables 3 and 4, 
respectively. In addition, the details of the two FCN methods (U-Net and SegNet) are 
also shown in the two Tables. The highest OA, kappa, average f1 of each method and f1 for 
each category are marked with stars and in bold.

The classification results of factory buildings, residential buildings, and water bodies of 
OCNN1 are more effective than IOCNN in Sacramento. The f1s of the three categories 
between IOCNN and OCNN1 are comparable. Nevertheless, the highest f1 of almost all 
categories in Sacramento and all categories in Auckland are all achieved by using IOCNN. 
IOCNN not only performs better than other state-of-the-art OCNNs, but also works more 
effectively than U-Net and SegNet. Even though the U-Net and SegNet made a progress in 
semantic segmentation in computer vision, they cannot work effectively in VHR image 
classification, which is determined by the attributes of VHR remote sensing images with 
large area.

4.2. Multi-scale classification results

Multi-scale classifications are conducted based on the single scale CNN models. IOCNN 
and OCNN1 achieve the desirable single scale classification results so that only these two 
methods are only selected in the multi-scale study. The scale selection for scale combina
tion is based on the single-scale classification accuracies on the study areas. We selected 
the top six scales in accuracy for combining scales. The top six scales in Sacramento are 25, 
35, 45, 55, 65, and 75 shown in Figure 9 in the manuscript. The top six scales in Auckland 
are 35, 45, 55, 65, 75, and 105. Based on the classification results of the two methods at 
single scales, the scale combinations of 25–35, 35–45, 45–55, 55–65, 65–75, 25–35-45, 35– 
45-55, and 55–65-75 are conducted in Sacramento, and the scale combinations of 34–45, 
45–55, 55–65, 65–75, 75–105, 34–45-55, 35–45-65, 45–55-65, and 65–75-105 are con
ducted in Auckland. The multi-scale classification results are shown in Figure 10.

Figure 10. Multi-scale classification results of IOCNN and OCNN1.
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The multi-scale classification results show that IOCNN performs better than that of 
OCNN1 at all scales, demonstrating the effectiveness of IOCNN. In addition, the OAs of 
triple scale results are often higher than that of double scale. The optimized scale 
combinations of IOCNN (OA: 91.59%, kappa: 0.9041, f1: 0.9108) and OCNN1 (OA:90.17%, 
kappa: 0.888, f1: 0.8959) are the same triple scale 25–35-45 for Sacramento. In addition, 
the optimized scale combinations of IOCNN (OA:93.13%, kappa: 0.9156, f1: 0.914) and 
OCNN1 (OA:91.25%, kappa: 0.8926, f1: 0.8942) are triple scale 35–45-65 and 35–45-55 for 
Auckland, respectively.

The scale effects inherent to OCNN are illustrated in Figure 11. The classification for the 
single scales perform poorly relative to the classification results for the multiple scales. 
Moreover, typical object-level salt-and-pepper errors are found at the small scales (i.e. 
25� 25 and 35� 35 scales), and the classification results of small objects are better than 
those of large objects. Conversely, object-level salt-and-pepper errors are markedly reduced 
in the ground object areas at the large scales (i.e. 95� 95 and 105� 105) scales. However, 
objects with small areas or narrow widths are easily misclassified as their neighbour objects. 
The multi-scale methods are proposed to address the scale effect issue in single scales.

The multi-scale method combines multiple single-scale features and retrains the fully 
connected layers in the CNN model to obtain the multi-scale features. This technique 
could considerably improve the classification results. Obviously, the salt and pepper errors 
are basically solved by the multi-scale method from the Figure 11.

Figure 11. Scale effects in IOCNN classification results.
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4.3. Dividing zone results

The contributions of dividing zones involve data pre- and post- processing. The number of 
geographical objects is heavily reduced by dividing zones, which simultaneously 
improves the efficiency of remote sensing image classification. In addition, a higher 
classification OA can be obtained by combining the classification results of each zone at 
their optimized scales. Zone division results are shown in Figure 12. Both images are 
divided into three zones with coarse boundaries. In fact, the zones have no any labels. To 
emphasize the dividing results, these zones match the residential, industrial, and natural 
zones in the study areas.

Each zone can be re-segmented into objects with optimized segmentation parameters 
based on the land covers in each zone. Thus, the segmentation result cannot be affected 
by the smallest objects in images. The segmentation effect is improved by dividing zones, 
which simultaneously reduces the number of geographical objects. Furthermore, the 
classification efficiency is improved by using this strategy. Figure 13 shows the number 
of objects in dividing zones and none-dividing zones.

The number of objects with dividing zones is reduced to 57.5% of that in none-dividing 
zones for Sacramento. In addition, the number of objects with dividing zones in Auckland is 
reduced by 26.4% compared with objects with none dividing zones. However, the scale 
effects during classification still exists and varies across different zones. Therefore, each image 
is initially divided into smaller zones, and each zone is separately processed by IOCNN. The 
results of all zones are eventually merged to improve the OA of the image classification. The 
optimized scales of residential, natural, and industrial zones in Sacramento are 25–35-45, 55– 
65-75, and 25–35-45, respectively. In addition, the optimized scales of residential, natural, and 
industrial zones in Auckland are 35–45-65, 25–45-65, 65–75-105, respectively. By combing 
results of these zones, new highest values for Sacramento (OA: 91.65%, kappa: 0.9048, and f1: 
0.9138) and Auckland (OA: 93.49%, kappa: 0.9201, and f1:9204) are achieved.

Figure 12. Zone division results.
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5. Discussion

5.1. CNNs versus FCNs

Convolutional neural networks (CNNs) and fully convolutional networks (FCNs) are the 
two key directions of deep learning in image classification, semantic segmentation, and 
image fusion. In the conventional computer vision, CNNs are commonly used to label 
images. FCNs often segment images and then mark pixels semantics. FCNs perform well in 
semantic segmentation of natural or life images, but not in remote sensing image 
classification. Figure 14 shows the disadvantages of U-Net and SegNet compared with 
IOCNN in image classifications. The FCNs show great potential for remote sensing image 

Figure 13. Number of objects in dividing zones and none dividing zones.

Figure 14. Local comparison of FCNs and IOCNN.
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classification. However, FCNs cannot overcome a classical issue in remote sensing, where 
objects of the same land cover type show different spectrums and objects of different 
land cover types show the similar spectrums. Obviously, most of the misclassifications in 
Figure 14 are due to this issue which is not common in computer vision. Given that CNNs 
have large respective field that covers surroundings. As The context information can be 
learned by CNNs, CNNs can better handle this problem. Thus, IOCNN is more suitable for 
remote sensing classification comparing with FCNs.

5.2. Dividing zone for pre- and post-processing and scale effect

The zone division method is a highlight of this study for pre- and post-processing. The 
segmentation parameters are defined by the smallest objects in the image due to the 
complexity of land covers, leading to an over-segmentation of the other categories. 
Therefore, the overall efficiency of OCNNs is decreased by the tremendous objects 
generated by the segmentation. Most categories are only located in the corresponding 
functional zones and form local clusters (for example in the two study areas, residential 
buildings are mainly located in residential zones and factory buildings mainly located in 
industrial zones). Thus, the classification parameters can be optimized for each divided 
zone. Additionally, the classification result with optimized scales of different zones can be 
merged on the whole image. In this situation, the number of over segmented objects is 
dramatically reduced.

The scale effect is a tricky question in OBIA. This effect is a kind of limiting effect that 
exists objectively and is expressed by scales. The logic behind this effect does not regard 
unconditional reasoning and the infinite extension of scales. Nonetheless, macroscopic 
movements can be inferred, and macroscopic laws can be replaced with microscopic 
experimental results. This scenario is an important philosophical root for many theore
tical paradoxes. The scale effect in remote sensing image classification means that the 
classification results may vary greatly across different classification scales, particularly in 
terms of an object size in an image. Objects vary widely in terms of sizes. For example, 
the biggest artificial object (an industry building) in the studied image covers approxi
mately 4100 m2. However, the smallest artificial object (tracks and a few cement roads) 
covers about 50 m2. If only the segmented objects (parts of actual objects) are con
sidered, the smallest segmented objects will cover 1 pixel (the inevitable product of the 
MRS algorithm), while the biggest segmented objects will cover more than 60,000 pixels 
in the study images. Different objects also vary in terms of optimized scales. Given this 
condition, a single scale cannot be applied to achieve the desired classification perfor
mance. Meanwhile, multi-scale methods can be applied to extract object features. 
However, these methods lead to a compromise between different optimized scales. 
According to Tobler’s First Law of Geography, geographical objects or attributes are 
related to one another in spatial distribution. In urban or near-urban areas, the cluster
ing and regular distributions are obvious. The study areas in our research contain 
clustering and regular distributions. The proposed method is also conducted to achieve 
zone-level self-adaptative scale based on the dividing and conquering strategy. This 
work addresses the scale effects, which is a fundamental issue overlooked by many 
remote sensing studies. The proposed dividing zone method conforms with Tobler’s 
First Law of Geography and the idea of the scale effects.
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5.3. Convolutional positions for object classification

Parts of objects can be determined and extracted by the BTS. These parts can also be 
evenly distributed within the objects. Thus, the detailed inner and surrounding 
information can also be derived by the OCNN model. From the data perspective, 
the convolutional data extracted by BTS can be reduced greatly. For example, other 
convolutional selection methods may generate positions located on the boundary of 
objects. Given this condition, two objects of different categories may present them
selves in the same convolutional window, a scenario that will cause huge interfer
ence to the classification results. The BTS method can be used to overcome the issue. 
From the feature perspective, the extracted features from the convolutional window 
generated by the BTS can be classified much easier. We select three methods as 
comparative methods on the BTS. Method one (M1), two (M2), and three (M4) are 
derived from OCNN1, OCNN2, and OCNN4. The convolutional patches extracted by 
OCNN3 and OCNN5 are generated based on the entire study image, not based on the 
object, so that we don not take them as the comparative methods on the BTS. 
Figure 15 shows the examples of objects with their corresponding convolutional 
positions and convolutional windows based on BTS and comparative methods. The 

Figure 15. Results of comparative methods on the BTS. (a), (e), and (j) are the results of the BTS; (b), (f), 
and (k) are the results of M1; (c), (g), and (m) are the results of M2; (d), (i), and (n) are the results of M3.
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convolutional positions are evenly distributed within objects, including those with 
highly irregular shapes, thus demonstrating the effectiveness and robustness of the 
sampling algorithm.

5.4. Multi-scale deep features for land cover classification

The features used for land cover classifications are abstractions observed from VHR 
images. The abstract features hidden in the spatial structures or patterns of images are 
defined as single features when only single-extracting convolutional windows are used. 
However, this method is an inadequate to express the deep features. The visualization of 
inadequate expressions leads to scale effects, as shown in Figure 11, in which object-level 
salt-and-pepper errors exist in the classification results at the small single scales, and fuzzy 
boundaries are presented in the classification results at the large single scales. The issues 
can be addressed using the proposed method with multi-scale features. Instead of simple 
combinations of classification results at the different single scales, the features extracted 
from fully connected layers are combined in the multi-scale method. As shown in 
Figure 10, all of the highest classification accuracies are achieved in IOCNN by using multi- 
scale features. Therefore, multi-scale CNNs are more effective than single CNNs for feature 
representation.

5.5. IOCNN for VHR image land cover classification

The IOCNN method is designed by combining zone division, the BTS method, multi-scale 
feature characterization, and the OCNN classification approach. IOCNN, as it inherits the 
capability of OCNNs in mining spatial information, structures, and patterns, can analyse 
the variations in deep features across different zones, use optimized segmentation scale 
parameters for each zone, derive convolutional positions from the shapes of objects, and 
label the objects according to their multi-scale deep features.

Each divided zone has its distinctive domain requiring unique scale parameters, and 
the result is the varying scale effects across different zones. However, a uniform scale 
parameter cannot effectively meet the requirements of complex scale effect issues for the 
different zones in an image. Therefore, the object segmentation needs to use adaptive 
scale parameters for each zone. Zone division not only plays an important role in the 
object segmentation in the image’s pre-processing phase but also helps merge the 
optimized classification result for each zone in the post-processing phase. For example, 
the best classification result in Sacramento with an OA of 91.65% is achieved by merging 
the residential zone classification result at the scale of 25–35-45, the natural zone 
classification result at the scale of 55–65-75, and the industrial zone classification result 
at the scale of 25–35-45. In terms of the distribution of convolutional positions, the BTS 
method contributed effectively to the representation of multi-scale convolutional deep 
features. The classification of highly complex objects benefits from the optimization of 
convolutional positions generated by BTS.

Objects that are slightly over-segmented by MRS have high homogeneity. Theoretically, 
the spatial relationships and neighbourhood patterns of objects represent important infor
mation in the classification when deriving convolutional positions. On the one hand, the 
internal deep features of the objects should be considered. On the other hand, several other 
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neighbourhood deep features of the objects should be identified. The results of this study 
indicate that the convolutional positions generated by the BTS method can utilize both the 
internal and neighbourhood deep features of the objects. Only the objects with high shape 
indexes are sensitive to their convolutional positions. Although not all categories in the 
study areas could be classified correctly using the positions generated by BTS, the method 
constantly generats good classification results in most categories. The benchmark for 
generating convolutional positions are the different stratified zones. By combining these 
divided zones with the BTS method, IOCNN can reach a high classification accuracy.

5.6. Future research

The proposed IOCNN method attains notably high OA, kappa, and f1 for VHR image land 
cover classification. Currently, precise zone boundaries cannot be extracted by the 
method, and this scenario may cause incorrectly divided zones. The efficiency of the 
BTS algorithm is reportedly low. Theoretically, the BTS undergoing five recursive local fine- 
tuning requires lots of running time. The local fine-tuning of convolutional positions is 
also I/O-intensive and requires a high computational resource. Moreover, multi-scale 
convolutional deep features comprise various categories in different zones. Each category 
cannot be extracted at its optimal scales, so that feature representations cannot easily 
label objects at their optimized scales.

6. Conclusion

Accurately labelling all categories for land cover classification is challenging because of 
the complexity of objects and the diversity of the zones. A classification method that 
considers object complexity and regional heterogeneity is therefore needed. Moreover, 
geographic phenomena are inherently hierarchical and stratified. Stratified processing is 
suitable for VHR image land cover classification with multiple zones. To achieve this 
objective, the IOCNN method is proposed in this study including a novel zone division 
and BTS method for VHR image classification.

Four contributions are made in this study:

(1) Dividing zones are firstly used for classifying VHR images with multiple zone 
structures. Introducing zone division into OCNN prevents the over-segmentation 
of each zone and improves the efficiency of the algorithm.

(2) Novel binary tree sampling (BTS) for generating convolutional positions of Object- 
based CNNs is used. The BTS based on zone division can provide a highly reason
able and suitable labels of objects. The high classification accuracy achieved in this 
work proves the effectiveness of the BTS. The convolutional positions in the study 
areas further confirm the results. Additionally, the classification results prove that 
OAs can be substantially improved by the IOCNN.

(3) The proposed method achieves combinations of the optimized scales at different 
zones in an image. The combination of multi-scale results of different zones can 
improve the classification performance. The idea of ’divide and conquer’ is theore
tically consistent with the stratified processing theory in geography.
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(4) The classification OA, kappa, and f1 of the proposed IOCNN method are higher than 
other state-of-the-art methods.

In conclusion, the IOCNN method is robust, effective, and useful for the land cover 
classification of VHR images with multiple zones. However, the coarse boundaries of the 
divided zones, the efficiency of BTS, and the optimized scales for certain objects need to 
be addressed in future studies.
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