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Over the past century, non-native saltcedar (Tamarix spp.) has expanded intomost of riparian zones of the south-
western United States and posed significant threats to the native biotic communities. Repeated monitoring of
saltcedar distribution over region-wide geographic areas is urgently essential for conservation agencies to de-
velop cost-effective control strategies. Current studies havemostly concentrated on themapping of saltcedar dis-
tribution with a single remote sensing image acquired during its leaf senescence. Given the phenological
variation within saltcedar and the spectral confusion between saltcedar and natives, our ability to detect
saltcedar with a single-date image is still limited. The objective of this study was to develop new intra-annual
phenology-based strategies to detect exotic saltcedar with monthly time series of Landsat imagery. Several tem-
poral phenology-based detection strategies (i.e., phenological bands, phenological NDVI, and phenological met-
rics) that could track the intra-annual phenological trajectory of plants were devised. With the proposed
detection strategies, crucial months and phenological stages in saltcedar detection were investigated. Results in-
dicated that the proposed strategy of phenological bands could accommodate the phenological variation within
saltcedar and improve the classification accuracy significantly. Several phenological stages (e.g., flowering and
leaf senescence) were deemed as important in discriminating saltcedar from other riparian plants at the Landsat
scale. The proposed strategywas found to be relatively robust to the lack of a single Landsat image. It is concluded
thatmonthly time series of Landsat imagery are promising in facilitating the long-termmapping of saltcedar dis-
tribution over extended areas.
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1. Introduction

Invasive species threaten the functioning of natural ecosystems and
cause substantial economic losses at the global scale. Among a number
of exotic plants, saltcedar (Tamarix spp.), a woody shrub, is particularly
problematic in the southwestern United States and has levied signifi-
cant impacts on the riparian ecosystems over the past century
(Zavaleta, 2000). Deliberately introduced to United States, saltcedar is
now envisaged as the third most frequently occurring woody riparian
plant in the western US (Friedman et al., 2005). The widespread inva-
sions of saltcedar have been indicted for altering fire regimes, increasing
soil salinity, depleting river flows, and reducing recruitment of native
plants (Di Tomaso, 1998; Hart, White, McDonald, & Sheng, 2005). Mil-
lions of dollars are spent annually by local, state, and federal agencies
eradicating and controlling this exotic plant (Follstad Shah, Dahm,
Gloss, & Bernhardt, 2007). One control technique that has garnered con-
siderable attention is the use of biological control agent (saltcedar leaf
beetle,Diorhabda spp.) to defoliate saltcedar (Hultine et al., 2009). How-
ever, recently the negative perceptions of saltcedar have been
ang@buffalo.edu (L. Wang).
challenged by new researchfindings, and the role of saltcedar in ecosys-
tem function and habitat degradation has been called for reevaluation
(Glenn & Nagler, 2005; Shafroth et al., 2005; Stromberg, Chew, Nagler,
& Glenn, 2009). Accurately mapping the spatial distribution of saltcedar
is indispensably crucial for conservation agencies to reframe the view of
this introduced plant and to undertake systemic restoration of riparian
ecosystems (Nagler, Glenn, Jarnevich, & Shafroth, 2011; Stromberg
et al., 2009).

Remote sensing offers valuable opportunities to detect saltcedar and
monitor its geographical distributions. Drawing on the information
from spectral, temporal or spatial domains, researchers have explored
remote sensing with extensive efforts to map plant distributions in
various ecosystems (Bradley, 2014; Diao & Wang, 2014; He, Rocchini,
Neteler, & Nagendra, 2011;Wang & Zhang, 2014). Yet remote detection
of invasive plants to date has not been a painless task since many
different plants share similar spectral signatures, phenological patterns
or spatial textures. Capturing unique features of saltcedar that permit it
to be distinguished from surrounding native vegetation is key to
developing operational monitoring protocols for this exotic plant along
riparian corridors. A particularly desirable feature for characterizing
saltcedar is its distinct spectral signature (or foliage color) during the
leaf senescence stage (Everitt & Deloach, 1990; Wang, Silván-Cárdenas,
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Yang, & Frazier, 2013). Saltcedar leaves at this time window turn a
yellow-orange color and can be more easily distinguished from the
greenish or darker tones of associated native vegetation (e.g., willow
and mesquite). Consequently, this optimal time window has been fa-
vored by researchers to investigate the role of remote sensing images
in mapping the spatial distribution of saltcedar in various riparian
zones (Diao & Wang, 2014; Evangelista, Stohlgren, Morisette, & Kumar,
2009; Hamada, Stow, Coulter, Jafolla, & Hendricks, 2007; Narumalani,
Mishra, Burkholder, Merani, & Willson, 2006; Rundquist & Brookman,
2007; Silván-Cárdenas & Wang, 2010; Wang et al., 2013; Yang, Everitt,
& Fletcher, 2013; Ji & Wang 2016).

In recent years, the increasing proliferation of high-spatial resolution
airborne platforms has aided in the remote detection of invasive plants.
Aerial photos and high resolution hyperspectral imagery (e.g., Airborne
Imaging Spectroradiometer for Applications (AISA)), acquired within
the optimal timewindow, have been employed to distinguish senescent
saltcedar from native species with satisfactory classification accuracy
(Everitt & Deloach, 1990; Hamada et al., 2007; Wang et al., 2013). De-
spite the detailed plant information discernable with airborne sensors,
the high cost and limited coverage of these images have hampered
their application in saltcedar mapping over large geographical areas
(Lass et al., 2009). To facilitate the region-wide monitoring of saltcedar
invasion, the spaceborne Landsat image acquired during the early win-
ter has recently been investigated for mapping senescent saltcedar in
Texas (Silván-Cárdenas & Wang, 2010; Wang et al., 2013). This single-
image-based detection result indicated that Landsat imagery is promis-
ing in mapping large, dense patches of saltcedar across the landscape at
the regional scale. However, there are three issues with the single-
image-based detection strategy. First, plants in various phenological
stages may exist in a single Landsat image. The single image acquired
Fig. 1. Geographic location of the study area. Two Landsat footprints (path/row 31/39 and 32/3
shown on the right.
within the optimal time window is primarily used for detecting senes-
cent saltcedar via its distinct spectral characteristic. The potential spec-
tral confusion between saltcedar in other stages (e.g., leaf-on or leaf-off
stage) and native species, may dramatically compromise detection ac-
curacy, especially in heterogeneous landscapes. Second, despite the im-
portance of leaf senescence in saltcedar detection, other phenological
characteristics (e.g., flowering) may contribute to the discrimination
among the plants. A single remotely sensed image cannot take into ac-
count all essential phenological characteristics. Third, the availability
of the single Landsat image within the optimal time window is not as-
sured. The optimal time window lasts only three or four weeks (Yang
et al., 2013). Given the 16-day revisit cycle of Landsat, the detection suc-
cess is notably limited by the quality of few images.

The aforementioned issues point to the need for exploring a more
comprehensive suite of features that could improve detection of exotic
saltcedar from remotely sensed imagery. Plant phenology is a temporal
feature that portrays the seasonal growth and development of vegeta-
tion, and offers insights into plant physiological activities at various
stages (e.g., leaf elongation, bud differentiation, flowering, and leaf se-
nescence) (Lieth, 1974). Phenological trajectory of plants can be
established with the time series of satellite imagery through tracing
the temporal variation in spectral reflectance over the course of the
growing season (Morisette et al., 2008; Zhang et al., 2003). The ex-
tended observation period granted by the satellite imagery time series
thus offers more opportunities to capture distinct temporal features
that could improve classification accuracy. To date, remotely sensed
time series analyses of vegetation dynamics have been mostly con-
ducted with MODerate-resolution Imaging Spectroradiometer
(MODIS), Advanced Very High Resolution Radiometer (AVHRR), and
SPOT Vegetation (VGT) imagery (Kerr & Ostrovsky, 2003; Morisette
9) cover the study area. The false-color composite of Landsat imagery of the study area is
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et al., 2008). Morisette et al. (2006) extracted three phenological fea-
tures (i.e., mean, amplitude, and phase) from the MODIS time series to
describe the seasonal variation of vegetation greenness, and used
them to predict suitable habitats of saltcedar across their US range. Yet
the phenology extracted by the time series of coarse spatial resolution
MODIS imagery (250 m) is usually mixed by that of both native and
non-native plants, especially in spatially diverse riparian zones.

Time series of Landsat imagery, with the spatial resolution of 30 m,
are more suitable for capturing phenological dynamics of invasive
plants in spatio-temporal complex landscapes (Bradley, 2014).
Evangelista et al. (2009) used six Landsat images and derived vegetation
indices at different times of the growing season to map exotic saltcedar
along the Arkansas River in Colorado. The selected six Landsat images
that accommodate the seasonal variation were found to be more effec-
tive in detecting saltcedar than a single image. However, the six Landsat
images were acquired over five years (i.e., 1999–2003). The phenologi-
cal variations of plants during this time period include both intra- and
inter-annual variations. Given the fact that intra- and inter-annual
plant phenology usually occurs at different temporal scales, it is desired
to address intra- and inter-annual phenological variations separately
(Hufkens et al., 2012). Besides, sometimes it is difficult to assume that
the areas occupied by invasive plants remain unchangedwithin a num-
ber of years. Monitoring the saltcedar distribution on an annual basis is
more promising to guide the effective management of plant invasions.
Currently, most of intra-annual Landsat studies only use a very limited
number of images (e.g., two Landsat images) to incorporate the
seasonal variation in plant detection (Bradley, 2014; Peterson, 2005;
Rapinel, Bouzillé, Oszwald, & Bonis, 2015; Singh & Glenn, 2009). It is
still not clear how the rich information carried by the Landsat time
series within a year can be efficiently utilized to characterize the pheno-
logical trajectory of invasive plants and facilitate the remotemonitoring
of saltcedar.

The objective of our research was to develop new intra-annual
phenology-based strategies to detect andmonitor the geographical dis-
tribution of exotic saltcedarwithmonthly Landsat imagery. Specifically,
we sought to: 1) devise several intra-annual phenology-based detection
strategies that could track the phenological trajectory of plants through-
out the year (see Section 3.1), 2) investigate crucialmonths and seasons
in characterizing the seasonal variation of saltcedar, and 3) evaluate the
importance of the optimal timewindow in remotely detecting saltcedar.

2. Study site and data

2.1. Study site

The study site is located along the Forgotten River reach of the Rio
Grande River near the town of Candelaria, Texas (Fig. 1). The study
site covers an area of 5 km × 10 km centered at longitude 104.69°W
and latitude 30.12°N. The Rio Grande River originates from the San
Juan Mountains of southern Colorado, flows along the Mexico-United
States border, and extends southward to the Gulf of Mexico. The seg-
ment of the Rio Grande stretching from Fort Quitman, Texas, to the con-
fluence of the Rio Conchos near Presidio, Texas, is called the Forgotten
Fig. 2. Timeline of Landsat data available
River due to deteriorated riparian landscapes and excessive depletion
of river flows. Impacted by anthropogenic water regulations and dam
constructions, the hydrologic regimes and vegetation communities
along the Forgotten River have been profoundly altered in the past cen-
tury. The most notable change is the progressive replacement of native
floodplain communities by saltcedar (Engel-Wilson & Ohmart, 1978).
As a result, the vegetated riparian zone of the study site is primarily
composed of saltcedar, with mixes of native mesquite (Prosopis spp.)
and willow (Salix spp.). The colonization of saltcedar varies in density
and extent across the study area, including both monotypic dense
stands and sparse mixed patches. The native cottonwood (Populus
spp.), that historically dominated the floodplain, has been completely
eliminated.

2.2. Image acquisition and pre-processing

2.2.1. Landsat data
To devise new intra-annual phenology-based detection strategies, a

monthly time series of Landsat images for the year 2005 were con-
structed. The monthly sampling rate was selected as the tradeoff be-
tween the temporal revisit frequency of Landsat and the intra-annual
phenological dynamics of vegetation. The study site is covered by two
adjacent overlapping Landsat footprints (path 31, row 39, and path 32,
row 39) (Fig. 1). A total of 23 cloud-free Landsat Thematic Mapper
(TM) images can be acquired for this site over the course of the year
2005 (Fig. 2). Given the acquisition time of these Landsat TM images,
the image around the middle of each month was selected (or interpo-
lated) to construct and approximate the equally spaced monthly time
series. One exception is the month of December, which is deemed as
the optimal time window to spectrally distinguish senescent saltcedar
from natives. The image acquired in this month should be prioritized
in devising the detection strategies. Yet no Landsat TM images are avail-
able in December, 2005. The Landsat Enhanced Thematic Mapper Plus
(ETM+) images that contain data gaps due to the Scan Line Corrector
(SLC) failure were also scrutinized. It is noted that the Landsat ETM+
SLC-off image acquired on December 26 is free of clouds and of good
quality, and thus was selected in the subsequent time series analysis.
However, the training and testing data for assessing the detection strat-
egieswere not sampled from the SLC-off gapped area to eliminate its in-
fluence on the evaluation results.

Themonthly time series of Landsat imageswere co-registered to the
reference data (i.e., AISA, see Section 2.2.2) with root mean square er-
rors b0.2. Subsequently, the images were atmospherically corrected to
surface reflectance with the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS), using the 6S radiative transfer model
(Masek et al., 2006). For each Landsat image, six spectral bands
(i.e., band 1, 2, 3, 4, 5, and 7) with the spatial resolution of 30 m were
used in this study.

2.2.2. Reference data
Due to the difficulty of collecting sufficient ground truth samples at

the Landsat scale, the reference data for evaluating the efficacy of the
competing detection strategies was obtained through the classified
for the year 2005 in the study area.
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AISA image. The AISA imagewas acquired on December 21, 2005, which
coincided with the senescent stage of saltcedar and the leaf-off stage of
nativemesquite andwillow (Everitt & Deloach, 1990; Yang et al., 2013).
The image has a spatial resolution of 1 m, with 61 bands in the spectral
range from 400 to 1000 nm. This detailed spectral and spatial informa-
tion offered by the AISA image can help accommodate the within-class
spectral variation and facilitate the differentiation between saltcedar
and native species.

Two field trips were conducted in November 2004 and December
2005 to collect ground reference samples for classifying the AISA
image. With a handheld GPS (Trimble GeoXM), the locations of typical
land cover classes (i.e., saltcedar, native woody riparian species, non-
woody vegetation, and other land cover types) were recorded
(Table 1). An average of twenty points and ten polygons were obtained
for each land cover type. Additional polygons for non-vegetated areas
were manually delineated from the AISA image. Based on the extensive
field reconnaissance, a two-level hierarchical classification scheme was
designed. The scheme encompasses themost important land cover clas-
ses in our study area. Detailed land cover typeswithin each general class
(level I) were distinguished at level II. For example, saltcedar of various
phenological stages (e.g., green, senescent, and leaf-off saltcedar) were
examined at the level II classification exploratory stage. Investigation
of phenological variation in the classification was imperative at such a
fine spatial resolution to account for the within-class spectral variation
and reduce the spectral confusion between classes.

Spectral Angel Mapper (SAM)was used to classify the AISA image at
classification level II and assign each pixel to one of the land cover clas-
ses (Kruse et al., 1993). This classification method determines the spec-
tral similarity between the image spectra and reference spectra
(endmembers) in the spectral library via the spectral angle, and
matches the image spectra to the class that forms the smallest angle.
The reference spectral library was built from in-situ spectral signatures
measured for target land cover types with a portable handheld
spectroradiometer (ASD VNIR Field Spectrometer) during the field
trips, supplemented by the endmembers extracted for non-vegetated
classes directly from the AISA image. The SAM classification result was
then aggregated to the classification level I. The overall accuracy, evalu-
atedwith ground reference samples (200 for each class), was 93.7%, and
the kappa statistic was 0.91 (Table S1). Moreover, the classification re-
sult was spatially resampled to 30m to match the resolution of Landsat
imagery. The resampled pixels with the fraction of the main land cover
type (i.e., saltcedar, native woody riparian species, or other) N50%were
labeled as the reference data for evaluating the proposed Landsat-based
strategies. In total there were 3350, 2734, and 7752 pixels for saltcedar,
native species, and other, respectively. 50% of the samples for each class
Table 1
Two-level hierarchical classification scheme designed in this study.

Class level I Class level II

Saltcedar Green saltcedar (Tamarix spp.)
Senescent saltcedar (Tamarix spp.)
Leaf-off saltcedar (Tamarix spp.)

Native woody riparian species Leaf-on willow (Salix spp.)
Leaf-off willow (Salix spp.)
Leaf-on mesquite (Prosopis spp.)
Leaf-off mesquite (Prosopis spp.)
Marshy weed (Limnophila spp.)
Poverty weed (Iva axillaris Pursh)

Other Green grasses
Dry grasses
Creosote bush (Larrea tridentate)
Desert gravel
Paved road
Sand
Roof
Wetland
Water (river, lake or pond)
were randomly selected for training themodels, and the remainderwas
reserved for testing.

3. Methods

This section introduces themainmethods used to address our objec-
tives (Fig. 3). First, four detection strategies were developed to charac-
terize the intra-annual phenological trajectory of plants using the
monthly Landsat time series. Second, two classification algorithms
were employed to evaluate the four proposed detection strategies. Cru-
cial months and seasons in characterizing the seasonal variability of
saltcedar were explored. Additionally, the role of the optimal timewin-
dow in the Landsat time series was evaluated. The performance of
monthly Landsat imagery was compared to that of 11 months' imagery
(except December) to determine if the image acquired in the optimal
time window is indispensable to remotely detect saltcedar.

3.1. Four detection strategies

Based on the monthly Landsat time series, four detection strategies
were developed: 1) using solely single-date Landsat imagery acquired
within the optimal timewindow (i.e., the image acquired on December
26), 2) using the phenological bands (i.e., monthly Landsat bands),
3) using the phenological NDVI (i.e., monthly Landsat NDVI), and
4) using the phenological metrics (see Section 3.1.1) derived from the
monthly Landsat images (Table 2). The single-date Landsat imagery
provided a baseline for benchmarking the Landsat-based time series
analysis. Three competing temporal profiles that characterize the
intra-annual phenological dynamics of vegetation were investigated in
this study.

3.1.1. Phenological metrics
As one proposed detection strategy, phenological metrics were ex-

tracted from the monthly Landsat NDVI time series over the course of
the year 2005. The phenological metrics (e.g., timing of greenness
onset and length of the vegetation season) are temporal markers to
characterize the seasonal photosynthetic activity and phenological pat-
terns of plants.

To extract phenological metrics, the monthly Landsat NDVI time se-
ries was first fitted with smoothing functions. The smoothing functions
were used to suppress the short frequency variation and reduce the in-
fluence of outliers in the time series. Three smoothing functions were
explored in this study, namely adaptive Savitzky-Golay function
(Jönsson & Eklundh, 2004), asymmetric Gaussian function (Jönsson &
Eklundh, 2002), and double logistic function (Beck, Atzberger, Høgda,
Johansen, & Skidmore, 2006). The original time series curve was fitted
with these three functions through least square optimization. We
found that the adaptive Savitzky-Golay function exhibited better perfor-
mance (i.e., smaller root mean square errors), compared to the other
two functions. The adaptive Savitzky-Golay function fits the data to a
local polynomial within a moving window, and allows data smoothing
without forcing a givenmathematical function (e.g., Gaussian or logistic
curves). It was selected in this study to smooth the Landsat time series.

Eleven representative phenological features (Table 3), related to the
growing seasons, were then extracted from the smooth time series
using TIMESAT (Jönsson & Eklundh, 2004; Tan et al., 2011). The begin-
ning of the growing season is a valley point for which the vegetation
index begins to increase in a growing cycle. Similarly, the end of the
growing season is the brown-down date, for which the vegetation
index ends to decrease at the decaying end of a growing cycle. The
base NDVI value is indicative of soil background conditions. The peak
NDVI value is associatedwith the seasonal highest amount of vegetation
greenness, and the amplitude denotes the variation and seasonal range
of greenness during the growing period. The left derivative is the rate of
green-up and plant growth, and is theoretically related to the physiog-
nomy of vegetation. Similarly, the right derivative denotes the rate of



Fig. 3. Flowchart of the methodology to investigate the role of plant phenological trajectory traced by monthly Landsat time series in saltcedar mapping.

Table 3
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brown-down and senescence. The seasonal integrated NDVI is a widely
used proxy for net primary production (Ruimy, Saugier, & Dedieu,
1994). The large seasonal integral is the cumulative NDVI in vegetation
growth and indicates the vegetation production during the length of the
growing season. The small seasonal integral, on the other hand, indi-
cates seasonally active vegetation growth or productivity over the
growing season. These phenological features constituted the phenolog-
ical metrics that were used in the subsequent classification.

3.2. Initial classification

Initial classification of the four detection strategies was conducted
using all candidate features (e.g., 72 features for the strategy of
Table 2
Four detection strategies developed in this study.

Strategy Description

Single-date Landsat
imagery

(baseline for
comparison)

A single Landsat image (6 bands) was acquired on December
26, 2005, within the optimal time window to spectrally
detect saltcedar.

Phenological bands One Landsat image was acquired or interpolated in each
month of the year 2005 (see Fig. 2 for details). Each Landsat
image has 6 bands. The strategy contains 72 features
(6 bands times 12 months).

Phenological NDVI One Landsat image was acquired or interpolated in each
month of the year 2005 (see Fig. 2 for details). The NDVI
value was calculated for each Landsat image. The strategy
contains 12 features (1 NDVI times 12 months).

Phenological
metrics

Phenological metrics were extracted from the smoothed
time series of monthly Landsat NDVI. The phenological
metrics are composed of 11 representative phenological
features, namely beginning of the growing season, end of the
growing season, length of the growing season, base NDVI
value, time of the peak growing season, peak NDVI value,
amplitude, left derivative, right derivative, large seasonal
integral, and small seasonal integral.
phenological bands). Two classification algorithms (random forest and
linear discriminant analysis) were employed. As a non-parametric clas-
sification algorithm, random forest (RF) does not make assumptions
about the underlying distributions of the data. It is an ensemble of a
large number of decision trees. The construction of each decision tree
is based on randomly selected features of a bootstrapped sample of
training data (Breiman, 2001). For each individual tree, RF only searches
across a random subset of input features to determine a split at each
node, and the criterion for best splitting is frequently based on the
Gini index to maximize the dissimilarity between classes (Breiman,
Definition of phenological metrics.

Phenological metrics Definition

Beginning of the
growing season

The time for which the left edge has increased to 20% of
the difference between the left minimum NDVI and the
maximum NDVI.

End of the growing
season

The time for which the right edge has decreased to 20% of
the difference between the right minimum NDVI and the
maximum NDVI.

Length of the growing
season

The time window from the beginning to the end of the
growing season.

Base NDVI value The average of the left and right minimum value.
Time of the peak
growing season

The mean value of the date for which the left edge has
increased to 80% level and the right edge has decreased to
80% level.

Peak NDVI value The largest NDVI value of the fitted function over the
growing season.

Amplitude The difference between the peak NDVI value and the base
NDVI value.

Left derivative The ratio of the difference between the left 20% and 80%
levels to the corresponding time difference.

Right derivative The ratio of the difference between the right 20% and 80%
levels to the corresponding time difference.

Large seasonal
integral

The area of the region between the fitted function and the
zero level during the growing season.

Small seasonal
integral

The area of the region between the fitted function and the
base level during the growing season.
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2001; Breiman, Friedman, Stone, & Olshen, 1984). The complement
(out-of-bag) of the bootstrapped sample is used for evaluating the per-
formance of RF. The class label of each unassigned pixel is determined
by the majority voting of all the decision trees.

RF offers several advantages over traditional classification methods.
The special characteristics of RF (i.e., random features and random sam-
ples) largely reduce the correlation between individual trees, increase
the learnt pattern diversity, and enhance the capability of ensemble
generalization (Pal, 2005). Owing to the strong law of large number,
the generalization error always converges as the number of trees in-
creases (Breiman, 1996). RF can thus effectively eliminate the potential
model overfitting problem. Moreover, RF does not require dimensional
reduction of input feature space. It can handle thousands of features
without feature deletion, and measure the importance for each candi-
date feature. As an ensemble method, RF is robust to slight variation in
input data, and not sensitive to noise. RF has been demonstrated to
yield improved accuracy in comparison to other supervised classifica-
tion methods (Chan & Paelinckx, 2008; Gislason, Benediktsson, &
Sveinsson, 2006).

The RF algorithmwas implementedwith the randomForest package
in R statistical software (Liaw&Wiener, 2002). Two parameters need to
be defined in RF: the number of trees, and the number of random vari-
ables to split each node of the individual tree. It is desirable to use a large
number of trees and a relatively small number of split variables
(Breiman, 2001). In this study the number of trees was set to 1000, a
number large enough to obtain an unbiased estimate of generalization
errors. Once the error converges, the number of random split variables
defined only affects themodel accuracy slightly. A relatively small num-
ber of random variables can reduce the correlation between trees and
enhance the generalization capability. The ensemble learning strategy
can compensate for the decreased strength of the individual trees
trained by limited random variables (Breiman, 2001). In this study,
the number of random split variables was set to the square root of the
total number of features, which is the standard setting of the
randomForest package. The final class label assigned to each unknown
pixel was the most frequent class of the total 1000 decision trees
trained.

For comparison purposes, linear discriminant analysis (LDA) was
also employed to classify the same dataset. LDA is a well-known, widely
used supervised classifier that searches for linear combinations of input
variables to best separate classes (Fisher, 1936). It seeks to find the op-
timal linear transformation by maximizing the ratio of the between-
class variance to the within-class variance in the discriminant space
(Venables & Ripley, 2013). As a parametric classifier, LDA assumes
that classes followmultivariate normal distributions and have identical
covariance matrices (i.e., homoscedasticity). LDA was implemented
with the MASS package in R statistical software (Venables & Ripley,
2013).

3.3. Feature selection and final classification

With the initial classification result, the importance of candidate fea-
tures could bemeasured. In RF, the feature importancewas estimated in
terms of the degradation of model prediction (i.e., mean decrease in ac-
curacy), caused by the random permutation (Breiman, 2001). The
values of a feature in the out-of-bag (OOB) sampleswere permuted ran-
domlywhile other features were held constant. Themodified OOB sam-
ples were passed down the decision tree to obtain new predictions. The
prediction accuracy of themodified OOB samples was compared to that
of the original OOB data, and the difference was averaged over all the
trees grown in the forest. This mean decrease in prediction accuracy
was then used to determine the importance of the feature in the classi-
fication process. As for LDA, the explanatory power of the feature can be
estimated by themeandiscriminant function coefficients. The standard-
ized coefficient associated with the feature indicates the relative contri-
bution of the feature to the discriminant function. For each feature, the
weighted average of the standardized coefficients over all discriminant
functions can be used to measure its overall contribution towards the
discrimination between classes (Immitzer, Atzberger, & Koukal, 2012).

The recursive feature elimination algorithm was utilized in both
classifiers to select important features (ormonths) in saltcedarmapping
(Guyon,Weston, Barnhill, & Vapnik, 2002). The algorithm starts with all
candidate features (e.g., 72 features for the strategy of phenological
bands) in themodel, and progressively eliminates one insignificant fea-
ture until the predefined size of feature subsets (i.e., one feature in this
study) is achieved. In each iteration, it removes the least promising fea-
ture based on the feature importance measure (e.g., degradation of
model prediction in RF), rebuilds the model with the features retained,
recalculates the model accuracy (e.g., Kappa statistic), and remeasures
the feature importance (but not for RF, see Svetnik, Liaw, Tong, &
Wang, 2004). The algorithm is formulated to develop a parsimonious
classification model that identifies the optimal subset of discriminatory
features, while attaining the highest classification accuracy (Guyon
et al., 2002). It helps in ascertaining which features (i.e., months and
seasons) are desirable in modeling the differences between classes.
The recursive feature elimination algorithm was implemented with
the caret package in R statistical software, and the bootstrapping resam-
pling method was incorporated in the algorithm to secure better esti-
mates of the model performance during the selection process (Kuhn,
2008).

Final classification of the four proposed detection strategies was
then conducted using the selected features. Compared to the initial clas-
sificationwith all candidate features,final classification could effectively
improve the detection accuracy through using only the optimal subset
of discriminatory features.

3.4. Model validation and comparison

The confusionmatrixwas constructed for each classification strategy
with the testing samples to evaluate the model performance. Several
measures were calculated from the confusion matrix: the overall accu-
racy, the Kappa statistic, the producer's and user's accuracies for each
class (Congalton & Green, 2008). Furthermore, the McNemar's test
was employed to compare the overall classification accuracies of differ-
ent strategies in a statistically rigorous manner (Foody, 2004). It is a
non-parametric test for evaluating the statistical significance of the dif-
ference between two classification results based on the same testing
samples. For example, it can be used to test whether the classification
result using the single-date image acquired within the optimal time
window is significantly different from that using the phenological
bands. The McNemar's test is based on the chi-square test statistic
(Eq. (1)).

χ2 ¼ f 12− f 21ð Þ2
f 12 þ f 21

ð1Þ

Here f12 denotes the number of testing samples correctly classified
by the first classifier, but incorrectly classified by the second classifier.
Similarly, f21 denotes the number of testing samples correctly classified
by the second classifier, but incorrectly classified by the first classifier.
The null hypothesis of theMcNemar's test states that the two classifiers
have the same error rate (i.e., f12= f21). The McNemar's test result fol-
lows the chi-square distribution with one degree of freedom.

3.5. Evaluation of the role of the optimal time window

As the optimal timewindow, December has beenprioritized inmon-
itoring the distribution of exotic saltcedar in the study area. Yet the
quality of the image acquired during this period is not always assured.
The few candidate images, limited by the 16-day revisit cycle of Landsat,
may severely suffer from cloud contamination or atmospheric noise. To
investigate the role of the optimal time window in saltcedar mapping,
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the classification performance using the monthly Landsat imagery
(i.e., phenological bands) was compared to that of 11 months' Landsat
imagery (i.e., 11 months' bands). 11 months' Landsat imagery denote
the same images as the ones of the monthly Landsat imagery, except
the image acquired during the optimal time window (i.e., December).
The importance ofmonths and seasons in the 11months' Landsat imag-
ery was also evaluated using the recursive feature elimination algo-
rithm. The performance of 11 months' Landsat time series can
illustrate how important the image acquired in the optimal time win-
dow is in discriminating saltcedar from native species. It can also indi-
cate how robust (or sensitive) the intra-annual time series analysis is
to the lack of a single image.

4. Results

4.1. Classification accuracies of four detection strategies

As the baseline for benchmarking the Landsat-based time series
analysis, the single-date Landsat image acquired within the optimal
time window, with the RF classification algorithm, yielded the overall
classification accuracy of 83.35% and the Kappa statistic of 0.71
(Table 4). The corresponding producer's and user's accuracies of the
saltcedar class were 87.04% and 81.59%, respectively. Three competing
temporal mapping strategies were explored in this study to capture
the phenological dynamics of plants. Compared to the single-date
Landsat image, the phenological bands, with the RF classifier, achieved
a considerably improved classification accuracy. The overall classifica-
tion accuracy increased from 83.35% to 88.54%, and the Kappa statistic
rose from 0.71 to 0.80. The McNemar's chi-square test rejected the
null hypothesis that the error rates for these two strategies were the
same (p b 0.001), and indicated that the strategy of phenological
bands did yield a more accurate classification. However, as for the phe-
nological NDVI (or phenological metrics), the model performance was
not significantly improved. As a widely recognized vegetation index,
NDVI is primarily developed to measure the photosynthetic activities
and greenness of plants, and is calculated based on the red band
(band 3) and the near-infrared band (band 4) of Landsat imagery. Com-
pared to the phenological bands, the decreased performance using phe-
nological NDVI (or derived phenological metrics) may be caused by the
reduced amount of critical land cover information obtained in each
month. The classification results from the LDA algorithm exhibited sim-
ilar patterns among the four detection strategies.

There were three classes (i.e., saltcedar, native species, and other)
considered in this study. By scrutinizing the commission and omission
errors of each class, we found that the strategy of phenological bands
performed better than that of the single-date imagery for all the classes
(Fig. 4). Compared to the accuracies of the singe-date imagery, the
user's accuracy of the saltcedar class increased by about 6–9% and the
producer's accuracy of native species increased by N10% through using
the phenological bands. The improved accuracy could also be reflected
in the confusion matrices constructed for these two classification strat-
egies (Tables S2 and S3). The comparisons revealed that the areas
saltcedar occupied were overestimated with the traditional single-
image-based detection strategy, mainly due to the spectral confusion
Table 4
Classification accuracies of the four proposed detection strategies.

RF LD

Strategy Overall
accuracy (%)

Kappa
statistic

Saltcedar Ov
ac

Producer's
accuracy (%)

User's
accuracy (%)

Single-date Landsat imagery 83.35 0.71 87.04 81.59 80
Phenological bands 88.54 0.80 91.22 87.51 84
Phenological NDVI 83.39 0.71 90.09 81.48 79
Phenological metrics 79.15 0.64 87.64 74.18 75
between saltcedar and native species. Concurrently, the areas inhabited
by native species were underestimated notably. The intra-annual phe-
nological information incorporated by the phenological bandswas ben-
eficial to correct these confusion errors.

The classification results indicated that the RF classifier consistently
performed better than the LDA classifier in terms of the overall accuracy
and McNemar's chi-square test statistic in all classification strategies
(Table 4). As for each individual class, the RF classifier yielded higher
classification accuracy than LDA with respect to the producer's and
user's accuracies in almost every scenario (Fig. 4). LDA is a parametric
classifier and need test the assumptions of the data. In our study the
classes were mostly normally distributed and had similar covariance
matrices according to the Box's M test, which led to similar patterns of
detection results between RF and LDA. Yet for the detection strategy
of phenological metrics, transformation (e.g., logarithm) of features
was needed to meet the assumptions of LDA. In contrast, RF is a non-
parametric classifier and does not assume the normal distribution of
the data. It is robust to the influence of the noise and outliers in the
data, and does not suffer from overfitting as other multivariate ap-
proaches (e.g., LDA) do. Unlike the traditional classification scheme,
the ensemble learning strategy of RF, with the majority voting decision
rule, effectively increases the learnt pattern diversity and reduces the
generalization error. Compared to LDA, RF is more capable of handling
high dimensional feature spaces. Given the advantages and improved
accuracy achieved, RFwasmainly scrutinized for subsequently identify-
ing the important months in remotely detecting saltcedar (Section 4.2)
and evaluating the role of the optimal timewindow in the Landsat time
series (Section 4.3).

4.2. Important months and seasons in saltcedar detection

With the most powerful detection strategy (i.e., phenological
bands), the recursive feature elimination algorithm was employed in
RF to investigate influential months and seasons in characterizing and
mapping the saltcedar. The algorithm started with all 72 bands (6
bands per month) in the model. It eliminated the least promising
band in each iteration based on the feature importance measure
(i.e., mean decrease in accuracy), until only one band remained in the
model. The overall accuracy of the model varied from 66.42% to
88.54%, depending on the number of bands used. The highest accuracy
(i.e., the overall accuracy of 88.54% and the Kappa statistic of 0.80)
was achieved when there were 68 bands constructing the RF. Among
these selected bands, the top crucial bands were colored in dark red,
while the least decisive bands were shown in dark blue (Fig. 5). The es-
sential bands, indicated by the red and orange color, were mostly dis-
tributed in October, November, and December.

In the feature elimination process, the feature importance scores of
these selected bands were calculated based on the mean decrease in
the OOB accuracy, caused by the feature permutation. The higher
score indicated that the corresponding band (or feature) contributed
more to the RF classification model. For each month, the average score
of the bands was calculated to gauge the contribution of the month to
the class separability and classification success (Fig. 6). The importance
of themonth denoted by the average score in Fig. 6 was consistent with
A
McNemar's test to compare RF
and LDA (p-value)

erall
curacy (%)

Kappa
statistic

Saltcedar

Producer's
accuracy (%)

User's
accuracy (%)

.20 0.67 89.73 71.74 51.77 (p b 0.001)

.91 0.74 90.99 82.65 85.50 (p b 0.001)

.33 0.64 88.42 73.79 95.73 (p b 0.001)

.73 0.58 86.69 69.94 65.96 (p b 0.001)



Fig. 4. The producer's accuracy (PA) and user's accuracy (UA) of three classes using RF (left) and LDA (right).
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the distribution of the band importance in Fig. 5. The most influential
month was December, with an average score of 14.07. Almost all the
bands contained the valuable information in discriminating the classes.
This explainedwhyDecemberwas deemed as the optimal timewindow
in the study area. However, October and November also were perceived
as important, with average scores of 12.15 and 11.37, respectively. In
late October, saltcedar leaves enter the senescence stage and start to
change colors. These top three months are all closely related to the
leaf coloration and senescence process of saltcedar. The Landsat time se-
ries is beneficial to capture the gradual change of leaf color during the
senescence stage and utilize this phenological information to discrimi-
nate saltcedar from native species. Besides the important months men-
tioned above, the feature importance measure also indicated that the
rest of months, such as August and June, can help in detecting saltcedar.

4.3. The role of the optimal time window in saltcedar detection

To investigate the role of the optimal timewindow in saltcedarmap-
ping, 11months' (except December) Landsat bandswere classifiedwith
the RF classification algorithm. Compared to the phenological bands
(i.e., 12months' bands), the overall classification accuracy of 11months'
bands decreased by 0.65% (from 88.54% to 87.89%), and the Kappa sta-
tistic decreased by 0.01 (from 0.80 to 0.79) (Table 5). The McNemar's
test result indicated that the difference between these two classification
accuracies was statistically significant (p b 0.05), given the large sample
Fig. 5. Contribution of the bands in each month to the classification with the strategy of
phenological bands. The top 10 important bands selected by the recursive feature
elimination algorithm were colored in dark red, while the least decisive bands were
colored in dark blue.
size of the testing data. Despite the statistically significant difference,
the model performance of the 11 months' bands did not deteriorate
much. It still significantly improved the model accuracy compared to
that of the single-date image strategy, by increasing the overall accuracy
from 83.35% to 87.89%, and the Kappa statistic from 0.71 to 0.79. This
notable increase in the model accuracy indicated that the Landsat time
series analysis is relatively robust and insensitive to the lack of the
image acquired within the optimal time window. The temporal pheno-
logical information possessed by the Landsat time series can be used to
compensate for the lack of distinct features offered by a single-date
image, and mitigate the influence of the image unavailability during
this period.

By comparing the confusion matrices constructed for the phenolog-
ical bands and 11 months' bands, we found that incorporation of the
bands acquired in December into the Landsat time series mainly in-
creased the producer's accuracy of native species (Table 6). Out of
1367 reference pixels of native species, 842 were correctly classified
with 11 months' bands. This number increased to 900 when the bands
in December were taken into account. In other words, despite the rela-
tively high accuracy achieved with 11 months' bands, the areas
inhabited by native species were underestimated. The image acquired
within the optimal timewindowwas beneficial to correct this omission
error. The incorporation of the distinct features during this period
Fig. 6. Contribution of each month to the classification with the strategy of phenological
bands through calculating the average score of the feature importance.



Table 5
Classification accuracies of the Landsat time series with or without the image acquired in
December.

Scenario
Overall
accuracy (%)

Kappa
statistic

Saltcedar

Producer's
accuracy (%)

User's
accuracy (%)

Single-date Landsat imagery 83.35 0.71 87.04 81.59
Phenological bands 88.54 0.80 91.22 87.51
11 months' bands 87.89 0.79 91.28 86.43

Fig. 7. Contribution of the bands in each month (except December) to the classification
with 11 months' bands. The top 10 important bands selected by the recursive feature
elimination algorithm were colored in dark red, while the least decisive bands were
colored in dark blue.
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helped further distinguish saltcedar from native species, owing to their
leaf color differences.

With the recursive feature elimination algorithm, the feature impor-
tance in the RF classification using only 11months' bandswas explored.
Out of 66 bands (i.e., 11 months with 6 bands per month), 53 bands
were selected with the algorithm to achieve the highest classification
accuracy (Fig. 7). Almost all themonths over the growing season carried
valuable information in discriminating the plants in the study area. The
average score of the feature importance was calculated for each month
(Fig. 8). The results indicated that, without themonth of December, No-
vember contributed the most to the prediction accuracy of the RF clas-
sifier, followed by October (Fig. 7 and Fig. 8). The rest of the months,
such as August, September, July, June, and May, also encompassed dis-
criminant phenological information (e.g., flowering and seed produc-
tion) that is useful to characterize the plants.

5. Discussion

A continuing challenge in conducting saltcedarmapping in the study
area is the spectral confusion between saltcedar and native shrubs. The
single-date-based detection strategy, with the image acquired during
the saltcedar leaf senescence stage, has been prioritized in previous
studies to capture the leaf color difference of these shrub plants. At
the Landsat scale, this operational strategy is relatively straightforward
to implement, but it fails to accommodate the phenological variation
within class. For example, saltcedar in various phenological stages
(e.g., leaf on, leaf senescence, and leaf off) may exist in an image. Yet
the single-date Landsat imagery acquired in this study is only effective
in detecting the senescent saltcedar. Though there was a lack of studies
assessing the influence of within-class phenological variation on the
mapping success, this variation did notably affect the detection accuracy
of saltcedar (see Section 4.1). Additionally, the timing of phenological
events (e.g., leaf senescence) is affected by a combination of biotic and
abiotic factors, such as regional climate, topography, latitudinal gradi-
ents, and species interactions in ecological systems (Richardson et al.,
2013). As a result, the timing of leaf senescence varies over space and
time (Friedman, Roelle, & Cade, 2011). It is difficult to repeatedly deter-
mine the optimal time window for detecting saltcedar across years and
locations without the expert knowledge. This single-date-based detec-
tion strategy thus lacks the generalization capability to conduct the
long-term, regional-scale monitoring of saltcedar.

The role of the Landsat time series was evaluated from three aspects:
phenological bands, phenological NDVI, and phenological metrics. The
detection strategy that remarkably improved the mapping accuracy
Table 6
Confusion matrices constructed for the monthly Landsat bands and 11 months' bands with the

Phenological bands

Reference data

Saltcedar Native Other Total

Classified data

Saltcedar 1528 180 38 1746
Native 86 900 141 1127
Other 61 287 3697 4045
Total 1675 1367 3876 6918
was through the utilization of the phenological bands. This phenology-
based detection strategy, compared to the commonly used single-date-
detection strategy, presented several advantages. First, the phenological
bands could better characterize the leaf senescence process of saltcedar.
Plant phenology is affected by various abiotic and biotic factors. These
factors, as a consequence, make it challenging to pinpoint the exact
week (or month) for observing the saltcedar leaf senescence, especially
in spatially heterogeneous landscapes. In this study, October, November,
and December were selected as the most crucial in distinguishing
saltcedar from native species. These selected months are all closely re-
lated to the growth cessation and leaf senescence stage of saltcedar
(Everitt & Deloach, 1990; Yang et al., 2013; Diao & Wang 2016). Com-
pared to a single-date image, the Landsat time series is more capable of
accommodating the phenological variation within class. Hence this pro-
posed detection strategy increased the user's accuracy of saltcedar and
the producer's accuracy of native species.

Another advantage of this proposed strategy is that the phenological
bands carry rich information about the intra-annual phenological tra-
jectory of plant development. This phenology-based detection strategy
could trace the temporal variation in spectral reflectance of plants
over the course of the growing season. It takes into account various phe-
nological stages and biological events, rather than only the time win-
dow of leaf senescence. In this study, besides the late fall and early
winter period (i.e., October, November, and December), the rest of the
months also contributed discriminatory power between mapped clas-
ses. Several bands in May, June, August, and September were selected
as important features in saltcedar mapping, owing to the ability to cap-
ture phenological differences in vegetation. In the mapping year,
saltcedar begins blooming in late May and achieves the peak of
flowering in June. The flowers produced by saltcedar are typically
RF classifier.

11 months' bands

Reference data

Saltcedar Native Other Total

Classified data

Saltcedar 1529 201 39 1769
Native 81 842 128 1051
Other 65 324 3709 4098
Total 1675 1367 3876 6918



Fig. 8. Contribution of each month to the classification with 11 months' bands through
calculating the average score of the feature importance.
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pinkish-white, and can be well distinguished from the yellowish-green
flowers of mesquite. In September, the light green foliage of saltcedar
has been found to be different from the darker green foliage of mes-
quite, and the light-brown color of flowering willow (Everitt &
Deloach, 1990). Therefore, this strategy can enhance the discrimination
between plants that exhibit distinct phenological patterns, though the
plants may share similar spectral characteristics at a single time point.

The strategy of phenological bands is also relatively robust to the
lack of a single Landsat image. The study demonstrated that the map-
ping accuracy did not deteriorate much without the image acquired in
December. This detection strategy, therefore, can help overcome the
limits caused by a single image during certain time periods and add
credibility to the repetitive mapping of saltcedar distribution over
time. However, to extend the strategy to other targeted years, the
inter-annual phenological variation of plants need to be taken into ac-
count. Inter-annual climate variability and fluctuations may alter the
timing of phenological events. For example, warm springtime tempera-
tures can yield early bud-break and leaf flushing. To formulate a more
generalized and stable multi-year detection model, the time lag, due
to the shift of phenological timing, need to be incorporated in future re-
search (Fisher, Mustard, & Vadeboncoeur, 2006). TheMODIS vegetation
phenology products from theUS Geological Survey, alongwith key phe-
nological stages discovered by this study, can help determine the time
lag and guide the selection of relevant images. In this study, the geo-
graphical area for developing the phenology-based detection strategy
is limited to the extent of the AISA image to secure high-quality training
and testing data. Despite the relatively restricted geographical area, the
proposed strategy takes into account the phenological variation of
plants caused by environmental differences (e.g., topography)
(Table 1). It is expected that the proposed strategy can be extended to
geographical areas that share similar species composition, though the
time lag caused by the latitudinal difference may also need to be incor-
porated. In future studies, it is desired to refine the proposed strategy by
collecting high quality reference data (e.g., field data designed at the
Landsat scale) spanning diverse geographical regions to formulate a
more robust spatially generalized detection model. We admitted that
sometimes it is difficult to acquire sufficient cloud-free Landsat images
to formulate this phenology-based detection strategy. Under these cir-
cumstances, pinpointing several months that can capture the key phe-
nological differences between plants may also help in improving the
classification performance.
The other twodeveloped strategies (i.e., phenological NDVI and phe-
nological metrics) did not improve themapping accuracy of saltcedar in
this study. Compared to the phenological bands, the phenological NDVI
carries less information of land cover types in each month. Yet in this
study, almost all the bands from October to December play a role in dis-
criminating saltcedar from native shrubs (Fig. 5 and Fig. 7). Though
NDVI has been demonstrated to be an effective measure to separate
vegetated areas from non-vegetated regions, its power to distinguish
various shrub plants still needs to be examined. Compared to the tradi-
tional time series studies using satellites of high temporal resolution
(e.g., MODIS), the finer spatial resolution of Landsat in this study pre-
sents unique opportunities to distinguish the shrub plants along spa-
tially heterogeneous riparian corridors. However, the relatively coarse
temporal resolution of Landsat may not achieve the full potential of
NDVI time series in depicting the plant phenology. To better evaluate
the role of these two strategies, in future studies, it will be beneficial
to fuse the satellite imagery of high temporal resolution (e.g. MODIS)
with Landsat imagery to construct dense time series of synthetic
Landsat data. Several data fusion algorithms, such as the Spatial and
Temporal Adaptive Reflectance FusionModel (STARFM), and the Spatial
and Temporal Data Fusion Approach (STDFA), have been developed for
this purpose (Gao, Masek, Schwaller, & Hall, 2006;Wu, Niu, Wang, Wu,
& Wang, 2012). It will also be beneficial to build the NDVI time series
through combining the Landsat imagery with the upcoming ESA's
Sentinel-2 data.

As the third most frequently occurring woody riparian plant,
saltcedar has expanded its distribution in western riparian zones con-
siderably over the past century. The landscapes along the riparian corri-
dors, as a consequence, have been transformed enormously. The rapid
colonization of saltcedar has been indicted for the depletion of river
flows, the reduction of ecosystem diversity, etc. This negative percep-
tion of saltcedar in the riparian ecosystemshas recently been challenged
by new research findings and called for reevaluation (see Stromberg
et al., 2009). The reevaluation, however, suffers from the lack of distri-
butional maps and dynamic changes of saltcedar over time. Accurate
mapping of saltcedar in western riparian zones is thus urgently impor-
tant to provide a thorough understanding of the cause of vegetation
change, and ecological effects of non-native species. In recent years,
the advancement of satellite technologies (i.e., airborne hyperspectral
sensors) and classification algorithms has facilitated the detection of
saltcedar at local scales. Yet the remotely-sensed, regional-scale map-
ping of this exotic plant populating diverse riparian corridors still pre-
sents many challenges and limitations. To alleviate the limitations, in
this study, several intra-annual phenology-based detection strategies
were developed using the Landsat time series. With the freely available
historical archives and continuing acquisitions of Landsat imagery,
these strategies exhibit great potential in monitoring the spatial and
temporal dynamics of saltcedar, and guiding the systemic restoration
of the riparian ecosystems.

6. Conclusions

The riparian zones in southwestern US have undergone significant
changes over the last century, due to the rapid expansion and coloniza-
tion of saltcedar.Mapping the geographic distribution of saltcedar at the
regional scale is urgently needed to evaluate its role and ecological ef-
fects in spatially diverse riparian ecosystems. In this study, several
phenology-based detection strategies (i.e., phenological bands, pheno-
logical NDVI, and phenological metrics) that could track the intra-
annual plant phenological trajectory were developed with monthly
time series of Landsat imagery. The recursive feature elimination algo-
rithm was implemented in this process to identify crucial months and
seasons in distinguishing saltcedar from other riparian vegetation. The
importance of the optimal time window in the Landsat time series
was also explored. Compared to the commonly used single-date-based
detection strategy, the strategy of phenological bands largely increased
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the detection accuracy, especially the user's accuracy of saltcedar and
the producer's accuracy of native species. The drastic improvement in
plant discrimination can be attributed to its capability of carrying rich
phenological and spectral information of plants over the entire growing
season. The late fall and early winter period (i.e., October, November,
and December) was found to be themost crucial stage in differentiating
riparian vegetation in the study area. Yet several other months
(e.g., August, September, May, and June) also contributed discrimina-
tory power between mapped classes. Despite the important role of the
optimal time window, the strategy of phenological bands was found
to be relatively robust to the lack of a single Landsat image. With the
unprecedented opportunities provided by Landsat imagery, it is be-
lieved that this proposed temporal phenology-based detection strategy
is promising to facilitate the long-term, region-wide monitoring of
saltcedar.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version. These data include three tables that present the confu-
sion matrices for evaluating the classification performance.
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