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A B S T R A C T

Large-scale remote monitoring of crop phenological development is vital for scheduling farm management ac-
tivities and estimating crop yields. Tracking crop phenological progress is also crucial to understand agricultural
responses to environmental stress and climate change. During the past decade, time series of remotely sensed
imagery has been increasingly employed to monitor the seasonal growing dynamics of crops. A variety of curve-
fitting based phenological methods have been developed to estimate critical phenological transition dates.
However, those phenological methods are typically parametric by making mathematical assumptions of crop
phenological processes and usually require year-long satellite observations for parameter training. The as-
sumption and constraint make those methods inadequate for phenological monitoring in heavy cloud-con-
taminated regions or in complex agricultural systems. The objective of this study is to estimate crop phenological
stages with satellite time series using a complex network-based phenological model (i.e., “pheno-network”). The
innovative pheno-network model is non-parametric without mathematically defined phenological assumptions
and can be constructed with partial-year remote sensing data. Rooted in network theory, the pheno-network
model characterizes the complex phenological process with spectrally defined nodes and edges. It provides an
innovative network representation to model the temporal dynamics of spectral reflectance of crops throughout
the growing season. With corn and soybean in Illinois as a case study, the pheno-network model was devised to
estimate their phenological transition dates along the leaf senescence trajectory from 2002 to 2017. Results
indicated that the estimated transition dates of corn had strong correlation with its ground-observed mature
stage. As for soybean, the estimated transition dates were closely associated with its dropping leaves stage. The
pheno-network model shows marked potential to advance phenological monitoring in complex agricultural
diversified and intensified systems.

1. Introduction

Vegetation phenology, as the recording of seasonally recurring
events (e.g., leaf emergence and senescence), has been long studied to
characterize the ecosystem structures and functions (Lieth, 2013). The
phenological dynamic of vegetation over the course of a year regulates
the terrestrial gross primary productivity, biogeochemical cycling, and
water-energy-carbon fluxes (Morisette et al., 2008; Peñuelas and Filella,
2001). It has been increasingly utilized in parameterizing climate
models, hydrological models, and terrestrial biosphere models to im-
prove the understanding of biosphere-atmosphere-hydrosphere inter-
actions (Foley et al., 2000; MacBean et al., 2015; Richardson et al.,
2012). This seasonal dynamic of vegetation is also a sensitive indicator
of vegetation response to global climate and environmental changes
(Kramer et al., 2000; Richardson et al., 2013). To understand the me-
chanisms driving the phenological process and its subsequent feedback

to earth systems, tracking the vegetation growth along the phenological
trajectory is essentially crucial.

Among a range of terrestrial ecosystems, phenological monitoring in
agriculture is particularly important. The growth and development
stages of crops are closely associated with various management activ-
ities (e.g., fertilizer and irrigation scheduling), and have considerable
implications for yield estimation (Sakamoto et al., 2013; Walthall et al.,
2013; Zhang and Zhang, 2016). The crop requirement of resources (e.g.,
water and nutrient) varies along the phenological trajectory. Its re-
sponse to climate change and environmental stress also differs (Brown
et al., 2012; Gao et al., 2017). For instance, the silking stage of corn is
particularly sensitive to drought stress, as drought may cause poor
pollination and sterility of corn and a subsequent decrease in corn yield
(Lauer, 2012). The setting pods stage of soybean is sensitive to en-
vironmental stress (e.g., moisture and high temperature) with regard to
the yield reduction (Kilgore and Fjell, 1997). The crop phenological
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progress also constitutes a key component in crop simulation models for
predicting the yields (Bolton and Friedl, 2013; Jin et al., 2017; Lobell
et al., 2015), and in operational crop mapping (Dong and Xiao, 2016;
Gómez et al., 2016; Qin et al., 2015; Wang et al., 2017; Zhong et al.,
2016). Large-scale monitoring of crop phenological development in a
rapid, consistent, and repeated fashion is indispensably a critical step
towards assessing the agricultural response to future climate change
and increasingly growing population.

The increasing availability of earth observation satellites, along
with the technical advancements in remotely sensed imagery proces-
sing, has facilitated the remote tracking of phenological development of
vegetation over wide geographical regions through time (Diao and
Wang, 2016a, 2018; Liu et al., 2017; White et al., 1997). Time series of
remotely sensed imagery acquired over the course of a year is employed
to characterize the crop phenophases and to capture the critical phe-
nological transition dates (e.g., onset, end, and length of growing
season) (Boschetti et al., 2009; Gao et al., 2017; Manfron et al., 2017;
Sakamoto et al., 2005; Wardlow et al., 2006). Over the past decade, a
suite of curve-fitting based phenological methods have been developed,
including double logistic methods, wavelet methods, harmonic
methods, two-step filtering methods, asymmetric Gaussian methods,
and high-order spline methods (Beck et al., 2006; Diao and Wang, 2014;
Hermance et al., 2007; Jonsson and Eklundh, 2002; Moreira et al.,
2019; Sakamoto et al., 2010; Sakamoto et al., 2005; Zhang et al., 2003).
With those phenological methods, the remotely sensed greenup onset of
the growing season has been found to be closely associated with the
ground-observed emergence stage of crops. The remotely retrieved
dormancy onset has been indicated to be related to the field-observed
harvest stage of crops (Gao et al., 2017; Wardlow et al., 2006). Despite
the promising detection results, those phenological methods are typi-
cally parametric by assuming that the process of phenological devel-
opment can be modeled by defined mathematical equations (e.g., lo-
gistic functions). They usually require year-long satellite observations
for parameter training and optimization. Affected by a combination of
natural and anthropogenic factors, the increasing agricultural diversi-
fication and intensification complicate the phenological signal captured
by the satellites. The phenological process in those complex systems
might not be adequately modeled by defined mathematical forms
(Atkinson et al., 2012). Besides, the satellite observations may be
contaminated by cloud and atmospheric aerosols to varying degrees,
which can make the acquisition of year-long remotely sensed data
challenging, particularly in tropical and high latitude regions.

The recent advance in network science opens up new opportunities
to model various complex systems (Barabási, 2009; Newman et al.,
2011). Rooted in network theory, complex networks characterize the
sophisticated relationships between constituents of systems with col-
lections of nodes and edges, such as social networks, biological net-
works, and narrative networks (Brockmann and Helbing, 2013;
Buldyrev et al., 2010; Eagle et al., 2009; Rubinov and Sporns, 2010;
Watts and Strogatz, 1998). The nodes are defined as the objects of in-
terest in complex systems, and the edges define the interactions be-
tween those objects. It provides an abstract representation of complex
systems by capturing the fundamental structures and patterns
(Newman, 2010). Complex networks have been actively explored in a
multitude of fields, ranging from biological to social sciences. The
flexibility of defining the nodes and edges in complex networks pro-
vides a wealth of possibilities to understand the complicated phe-
nomena, which may shed light on the aforementioned phenological
challenges with remote sensing imagery. Yet complex networks have
seldom been studied in remote sensing to represent the massive in-
formation contained by time series of satellite imagery. Its potential to
model the complex remotely sensed phenological process, particularly
in agricultural systems, is to be explored.

The objective of this study is to estimate the crop phenological
stages with partial satellite time series using a complex network-based
phenological model (i.e., “pheno-network”). The pheno-network model

tracks the temporal changes of spectral reflectance of agricultural crops
across the phenological development stages, with an innovative net-
work-based representation. Specifically, this study is designed to cap-
ture the critical phenological transition dates when the agricultural
crops shift from green leaf-dominating growth stages to the soil-dom-
inating harvest stage along the leaf senescence trajectory, through un-
covering the underlying structures of relationships of spectral re-
flectance across corresponding phenological stages. As a case study, the
pheno-network model is applied to the partial time series of Moderate
Resolution Imaging Spectroradiometer (MODIS) to remotely estimate
the mature stage of corn and the dropping leaves stage of soybean in
Illinois from 2002 to 2017.

2. Study site and data

2.1. Study site

The study site is the state of Illinois in the Midwestern US, which
covers an area of 150,000 km2. It is lying within the Central Plains,
characterized by relatively flat topography. The climate in most of
Illinois is humid continental, with hot humid summers and cold snowy
winters. The average annual rainfall is over 48 in. in the southern
Illinois, and around 35 in. in the north. Illinois is a major agricultural
state in the US Corn Belt region, and ranks among the top in corn and
soybean production. It is partitioned into nine agricultural statistics
districts (ASDs) according to climate, geography, and cropping prac-
tices (Fig. 1). These nine ASDs are northwestern (NW), northeastern
(NE), western (W), central (C), eastern (E), west southwestern (WSW),
east southeastern (ESE), southwestern (SW), and southeastern (SE)
districts. As two predominant crop types, corn and soybean are

Fig. 1. Nine agricultural statistics districts (ASDs) of Illinois.
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typically rotated in consecutive years. According to United States De-
partment of Agriculture (USDA) National Agricultural Statistics Service
(NASS), there are six phenological development stages for corn and
soybean, respectively. The phenological stages for corn are emerged,
silking, dough, dent, mature, and harvest stages. The phenological
stages for soybean are emerged, blooming, setting pods, turning yellow,
dropping leaves, and harvest stages.

2.2. Data

2.2.1. MODIS data and pre-processing
The MODIS Nadir Bidirectional reflectance distribution function

Adjusted Reflectance (NBAR) data (MCD43A4, version 6), acquired
from Land Processes Distributed Active Archive Center (LP DAAC),
were used in this study to construct the pheno-network model. The
MCD43A4 data are daily 16-day composite imagery, with a spatial re-
solution of 500m. At each date, the surface reflectance is composited
during a 16-day retrieval period (including its eight preceding days and
seven following days) using all the imagery from both Terra and Aqua
sensors. This composite imagery reduces the influence of atmospheric
aerosols, illumination differences, and cloud contamination. To take
into account solar and viewing geometries, the MCD43A4 data employ
the bidirectional reflectance distribution function (BRDF) correction
algorithm to normalize the surface reflectance under a nadir view.
Compared to other satellite-based observations, this high temporal re-
solution and BRDF-corrected imagery is more appropriate to construct
the time series throughout the year to track the crop phenological
progress. The MCD43A4 data covering the Illinois from 2002 to 2017
were acquired in this study. Seven bands (bands 1–7) that are char-
acteristic of crop properties (e.g., chlorophyll content, water content,
and leaf cell structure) were taken as the spectral reflectance in the
pheno-network model.

To further diminish the influence of atmospheric interference and
noise, the MCD43A4 data were pre-processed with ancillary quality
assurance layers. First, the MCD43A4 data were filtered using the
snow/ice quality layer of the MODIS BRDF/Albedo Quality data
(MCD43A2, version 6). As snow and ice may cause abnormal and
outlying spectral reflectance values in the data, this quality assurance
layer was used to filter out the pixels of each observation date that were
subject to snow/ice contamination. Second, the MCD43A4 data were
further pre-processed using the MODIS land surface temperature (LST)
data (MOD11A1, version 6). Corn and soybean are typically harvested
before the winter season. The daytime surface skin temperature layer of
the MODIS LST data was employed to identify the winter period when
snow might occur. For each acquisition date, the pixels with the day-
time LST values lower than 5 °C were flagged as spurious spectral values
(Zhang et al., 2006). Those invalid or missing observations, identified
by quality assurance layers, were then replaced by the moving average
of the surrounding closest good quality neighbors in the time series of
the MCD43A4 data. After the pre-processing, only the downward period
of the time series was retained for each pixel, as the pheno-network
model was to be built with the partial-year data. The downward period
denotes the temporal trajectory when the normalized difference vege-
tation index (NDVI) of the pixel has a decreasing trend in the time
series. The downward period is also taken as the leaf senescence tra-
jectory of crops in this study. The pheno-network model was con-
structed in this downward period to estimate the critical phenological
transition dates when the agricultural crops shift from green leaf-
dominating growth stages to the soil-dominating harvest stage, namely
the mature stage of corn and the dropping leaves stage of soybean.

2.2.2. Reference data
Two predominant crop types in Illinois are corn and soybean.

According to Cropland Data Layer (CDL) in 2017, corn was grown in
about 31% of the land in Illinois, and soybean was planted in 28% of
Illinois. The CDL data are generated by USDA on an annual basis using

the remotely sensed imagery to map the distribution and extent of
major crop types in the US (Johnson and Mueller, 2010). In Illinois, the
remote sensing data for deriving CDL are mainly from the Landsat, the
Disaster Monitoring Constellation (DMC) DEIMOS-1 and UK2, the In-
dian Space Research Organization (ISRO) ResourceSat-1 Advanced
Wide Field Sensor (AWiFS), ResourceSat-2 LISS-3, and the Sentinel-2
sensors. The CDL data are produced using the decision tree classifier or
maximum likelihood classifier at a spatial resolution of 30m (or 56m),
with high accuracy achieved for both corn and soybean classes in Illi-
nois. The producer’s accuracies and user’s accuracies for both classes
are higher than 90% for most of the years. In this study, the CDL data
were resampled to the spatial resolution of the MCD43A4 data (i.e.,
500m) and the fractions of corn and soybean were calculated for each
resampled pixel. At 500m spatial resolution, the phenology recorded by
satellites may be affected by the mixture of multiple land covers, and
may not correspond to the phenology of any particular crop type. This
mixed pixel effect complicates the tracking of crop phenological pro-
gress and the characterization of phenological transition dates (Diao
and Wang, 2016b; Peng et al., 2017). Hence, only the pixels with the
fractions of corn or soybean greater than 90% in each agricultural
statistics district were selected for constructing the pheno-network
model and conducting the subsequent phenological analysis.

To date, the best available field-based crop progress and condition
information at regional to state scales are Crop Progress Reports (CPRs),
released by NASS, USDA. The CPRs record the percentage of major
crops achieving a specific phenological development stage (e.g., mature
stage of corn or dropping leaves stage of soybean), and are updated
weekly by state NASS offices during the growing season from early
April to late November (reports are available at https://www.nass.usda.
gov/). Weekly CPRs are among the most popular and requested reports
published by NASS, and have significant impacts on farming practices
and agricultural market prices (Lehecka, 2014). About 4000 trained
reporters across states conduct ground-level field observations of crop
progress by following NASS standard definitions. These ground survey
observations are aggregated and summarized to the ASD- or state-level
to be reported in CPRs. ASD- or state-level reports provide a general
summary of crop phenological development across multiple counties,
and will serve as the ground reference data to evaluate the remotely
sensed phenological retrieval results from the pheno-network model.

3. Methods

3.1. Pheno-network model

The pheno-network model is a newly developed framework for re-
presenting the time series of a pixel using complex networks. In the
pheno-network model, the spectral reflectance obtained on each date of
the time series is considered as a node, namely a spectral node. These
nodes are further connected together according to their relationships,
referred to as edges. The collection of nodes and edges constitutes a
pheno-network. By formalizing the edges in different ways, the pheno-
network model can be utilized to represent different behaviors of the
satellite time series.

As the study focuses on estimating the critical phenological transi-
tion dates of crops in a satellite time series, two criteria are designed to
construct the pheno-network. First, the edges are formalized according
to the spectral similarity between the spectral nodes. The similarity
between a pair of spectral nodes A and B is measured as the cosine
distance between them:

=A B A B
A B

Distance ( , ) cos ·
|| |||| ||

1
(1)

Here, A and B are vectors representing spectral reflectance of the
nodes, and Distance(A,B) is the cosine distance between A and B. A|| ||
and B|| || are the norms of the vectors A and B, respectively. A short
cosine distance implies that the two nodes share similar spectral
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reflectance. The cosine distance compares the similarity between the
orientations of the vectors of spectral reflectance. It does not take into
account the magnitudes of the vectors, and hence diminishes the in-
fluence of illumination and albedo differences on spectral reflectance.

Second, a “tolerance value” (d0) is employed as a constraint to filter
out connections between spectral nodes that share little similarity. In
this way, the pheno-network only retains the edges with a cosine dis-
tance lower than the tolerance value. The tolerance value serves as a
control parameter to adjust the level of temporal constraint embedded
in the pheno-network model. As the change of crop phenology is a
gradual process, the spectral nodes obtained on nearby dates are more
likely to share similar spectral reflectance with shorter cosine distances.
The spectral nodes at different phenological stages tend to be more
distinct with longer cosine distances. With a sufficiently high tolerance
value, the resulting pheno-network will become a fully connected net-
work, meaning that every pair of spectral nodes are directly connected
by edges. There is no temporal constraint on such pheno-network. In
contrast, selecting a low tolerance value is equivalent to setting a strict
temporal constraint on the pheno-network. This will result in a sparse
network, where only spectral nodes representing nearby dates are di-
rectly connected. With different tolerance values, the pheno-network
can model different temporal dynamic processes of crop phenology.
Unlike conventional curve-fitting based phenological methods, where
the time constraint is explicit, the pheno-network model implicitly
embeds the time constraint into the tolerance value. That gives the
model more flexibility to track various levels of crop phenological dy-
namics, as well as higher tolerances to missing and abnormal data in the
satellite time series.

The pheno-network model typically needs to explore a range of
tolerance values in order to identify the most appropriate one for es-
timating the phenological transition dates of crops. First, the candidate
edges between all possible pairs of spectral nodes are created and sorted
based on their cosine distances. Second, we locate the 5th, 10th, 15th,
…, 95th percentiles of the sorted candidate edges, and select the cor-
responding cosine distances as the tolerance values. For example, when
d0 is set to the 5th percentile, the 5% of candidate edges with the
smallest cosine distances are selected to construct the pheno-network.
Each tolerance value will yield a single pheno-network. Network
measures are calculated for each network to estimate the transition
dates. The results are then compared between different networks to
determine the most appropriate date.

3.2. Network measures of crop phenological transition dates

To detect the phenological transition period of crops, the pheno-
network model needs to capture the spectral nodes that can represent
the transition period using their network characteristics. The spectral
reflectance of crops usually changes gradually before and after the
phenological transition period, and dramatically during the transition
period. In the network representation, those spectral nodes representing
the dates before the transition period share comparable spectral re-
flectance and are inclined to form a densely linked group among
themselves, referred to as the “pre-transition group”. Similarly, those
spectral nodes corresponding to the dates after the transition period
would tend to form the “post-transition group”. Due to the drastic
change in spectral reflectance during the transition period, the two
groups would have entirely different spectral reflectance and appear to
be far apart in the network with few direct connections. Those spectral
nodes representing the dates during the transition period would be
linked to both the pre- and post-transition groups, and serve as a bridge
standing between them. We refer those nodes as the “transition group”.
Among the three groups, the edges would be dense within the pre- and
post-transition groups, as the change of spectral reflectance is gradual
within these two periods, but sparse within the transition group be-
cause of the drastic change of spectral reflectance during this period. An
example of a pheno-network with these three node groups is shown in

Fig. 2.
As a whole, the transition group would consist of spectral nodes that

serve as the hub connecting the nodes across all three crop phenological
stages in the pheno-network. These nodes are also connected by rela-
tively sparse edges between them. By virtue of the unique network-
based representation, an innovative network measure, called “bridging
coefficient”, is designed in the pheno-network model to identify spec-
tral nodes possessing these characteristics. For a node i, its bridging
coefficient, noted as bci, is the ratio of its betweenness centrality and
clustering coefficient:

=bc b
ci

i

i (2)

Here, bi and ci are the betweenness centrality and clustering coef-
ficient values of node i, respectively. Some pairs of nodes in a network
are directly connected by an edge, while others need to be linked by a
chain of edges, called “paths”. In path-based connections, there may be
multiple paths connecting a pair of nodes, and each of the paths may
comprise different number of edges. Among these paths, the one with
the lowest number of edges is taken as the shortest path between the
pair of nodes. The betweenness centrality of node i is calculated as the
fraction of all shortest paths between all pairs of nodes that pass
through node i (Freeman, 1978):

=b i( )
i

s t i

st

st (3)

Here, st is the total number of shortest paths between a pair of
nodes s and t, and i( )st is the number of these paths that go through
node i. A node with a high betweenness centrality value has a large
fraction of shortest paths passing through it and plays an important role
in linking other nodes together in the network. For example, a network
of airports consists of all airports as nodes and flights between airports
as edges. The O’Hare international airport in Chicago, IL is one of the
nodes with high betweenness centrality values, as it serves as a regional
hub for a large number of airports in the Midwestern United States (Jia
et al., 2014). As for the pheno-network case, all paths connecting the
pre- and post-transition groups need to pass through the spectral nodes
in the transition group. These nodes would have high betweenness
centrality values in the network representation. Despite the importance
of betweenness centrality in identifying the nodes in the transition
group, we find that the irregular or abnormal spectral nodes, caused by
atmospheric interference and noise, might have comparable between-
ness centrality values. To reduce the effects of those spectral nodes,
another network measure, namely clustering coefficient, is taken into
account.

The clustering coefficient of a node is measured as the total number
of edges between its neighbors divided by the maximum number of
edges that potentially exist between the neighbors (Watts and Strogatz,
1998):

=c
e

k k
2|{ }|
( 1)i

jk

i i (4)

Here, nodes j and k are any two neighbors of node i, and ejk is the
edge between these two nodes, and ki is the total number of neighbors
of node i. The clustering coefficient measures the extent to which
neighbors of a node cluster together, and tends to be low for the nodes
with sparse edges in the pheno-network. Due to the rapid change of
spectral reflectance during the transition period, the neighbors of the
nodes in the transition group are inclined to be sparsely connected to
each other. As discussed above, the spectral nodes in the transition
group would have high betweenness centrality and relatively low
clustering coefficient values, which gives rise to high bridging coeffi-
cient values. With this network measure, the pheno-network model is to
capture those spectral nodes that are characteristic of the crop pheno-
logical transition period.
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The compositing process of the MCD43A4 data, along with its pre-
processing via quality assurance layers, is utilized to filter out the ab-
normal and outlying spectral reflectance in this study. To further reduce
the influence of potential abnormal (or outlying) spectral nodes on the
network-derived measures, a moving window is applied to calculate the
average bridging coefficient for each observation date to smooth out
fluctuations. For example, a seven-day moving window of an observa-
tion date includes its three preceding days and three succeeding days.
After experimenting a range of moving window sizes (i.e., one to ten
days), the seven-day moving window was found to be the best tradeoff
among spectral smoothness, spectral representations of nodes, and
duration of crop phenological transition periods. Hence, the average
bridging coefficient within a seven-day moving window of each ob-
servation day is calculated as its moving average bridging coefficient.
Since there is no clear boundary of the crop phenological transition
period, we focus on estimating the most critical phenological transition
date, namely the date with the highest moving average bridging coef-
ficient value.

As discussed in Section 3.1, this study explores a range of tolerance
values, each of which yields a unique pheno-network (Fig. 3). For a
given network, the moving average bridging coefficient will be calcu-
lated for all spectral nodes. The spectral node with the highest value
and the corresponding date will be identified. We will then compare all
identified nodes among all pheno-networks and select the spectral node
with the highest moving average bridging coefficient as the critical crop
phenological transition date.

3.3. Accuracy assessment

With the moving average bridging coefficient measure of the pheno-
network model, the phenological transition dates for the downward
period of a pixel can be estimated. For all the corn and soybean pixels
considered in Illinois, the transition dates are calculated through the
pheno-network model for all the monitoring years (2002–2017). The
retrieved phenological transition dates are compared to the field-based
observations of crop phenological progress in CPRs at ASD levels. For
each ASD, the cumulative percentages of the retrieved transition dates
over time are calculated for both corn and soybean. The derived cu-
mulative percentages are then compared to the percentage of crops
going into specific phenological development stages in CPRs. For in-
stance, the cumulative percentage of the retrieved transition dates of
corn during the downward period is compared to the percentage of corn
entering the dough, dent, mature, and harvest stages, respectively. The
comparisons are expected to unveil how pheno-network retrieved
phenology aligns with field-based phenological observations. For the
crop phenological stage most closely relevant to the pheno-network
retrieved result, the median date of crop achieving that stage is com-
pared to that of the corresponding transition dates using root mean
square error (RMSE) and R square.

The performance of the pheno-network model is further compared
to that of a parametric curve-fitting based phenological method. As one

Fig. 2. Pheno-network with three groups, namely the pre-transition, transition, and post-transition groups.

Fig. 3. Diagram of the methodology.
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of the most widely used phenological curve-fitting methods, the double
logistic method is utilized in this study to retrieve the phenological
transition dates of crops using year-long satellite observations (Zhang
et al., 2003). It assumes that the phenological trajectory of crop de-
velopment can be modeled using the logistic functions, and fits the
logistic curve to the NDVI observations over the course of a year. The
rate of change in the curvature of the fitted curve is then employed to
retrieve the crop phenological transition dates. It estimates the transi-
tion dates by capturing the local extremes (e.g., minimum or maximum)
in the rate of change in the curve curvature. For all the corn and soy-
bean pixels in Illinois throughout 2002–2017, the transition dates of the
onset of dormancy are calculated using the curve-fitting based method,
and compared to those from the pheno-network model using the ground
reference data.

The conventional curve-fitting based phenological methods typi-
cally require year-long satellite observations to estimate the phenolo-
gical transition dates. In contrast, the pheno-network model can be
constructed with partial-year remote sensing data (e.g., pheno-network
model for the downward period). The size of the temporal window
defines the maximum number of spectral nodes considered in the
model. In this study, the role of the size of the temporal window in
estimating phenological transition dates is evaluated through sensi-
tivity analysis. Specifically, a multitude of temporal segment windows
for the downward period of corn and soybean are tested for phenolo-
gical estimates. The size of temporal segment windows for constructing
the pheno-network model varies from 140 days (day of year [DOY]
191–330) to 20 days (DOY 251–270), with an increment of 10 days.
Each time the change of the temporal window size is via 5 days de-
duction from both ends of the window, with reference to field-observed
crop phenological progress. For example, when the size of the temporal
window reduces from 140 days to 130 days, the window changes from
DOY 191–330 to DOY 196–325. This way in changing the temporal
window size would ensure that the critical phenological transition
periods could be included in most of testing windows. For each tem-
poral segment window, the median date of the estimated transition
dates is compared to that of the corresponding field-observed pheno-
logical stage using RMSE and R square.

4. Results

By defining the nodes of spectral reflectance and edges of spectral
similarities between the nodes, the pheno-network model characterizes
the structure of temporal dynamics of remotely sensed spectral re-
flectance along the phenological trajectory. It provides a network-based
representation of the crop phenological process. In this study, the
pheno-network model was constructed for each corn or soybean pixel of
Illinois during the downward period of a year. With a corn pixel in 2006

as an example, the network representation of its downward phenolo-
gical progress was shown in Fig. 4a. Three node groups, namely the pre-
transition, transition, and post-transition groups, could be roughly
identified in this pheno-network. The colors of the nodes denoted the
values of the moving average bridging coefficients, with an orange tone
indicating a high moving average value, a yellow tone denoting a value
in the middle, and a blue tone suggesting a low value. Compared to the
ones in pre- and post-transition groups, the spectral nodes in the tran-
sition group had higher moving average bridging coefficient values. In
Fig. 4a, the nodes in the transition group served as the bridging hub
connecting the nodes across groups, and exerted a critical role in con-
trolling the temporal phenological dynamics of spectral reflectance. The
neighbors of those nodes were sparsely connected between themselves.
Through integrating the betweenness centrality and clustering coeffi-
cient, the bridging coefficient measure was characteristic of the distinct
network structure during the transition period of crop phenology. The
high moving average bridging coefficient values of those transition
nodes indicated that this network measure could be utilized to capture
the node representing the critical phenological transition date of crops.

During the downward period (DOY 191–330) of the pixel, the one-
day bridging coefficient (i.e., without moving average) and seven-day
moving average bridging coefficient of each observation date were
shown in Fig. 4b. Compared to the one-day network measure, the
moving average bridging coefficient exhibited much smoother and
clearer temporal patterns of spectral nodes. Specifically, the spectral
nodes around DOY 255–265 achieved high moving average bridging
coefficient values, with the highest one at DOY 260 representing the
critical phenological transition date. These nodes were colored in or-
ange in the pheno-network, demonstrating their transitional roles in
representing the crop phenological progress (Fig. 4a). The fluctuations
of the one-day bridging coefficient values, including relatively high
values at DOY 241 and 272, were smoothed out in the seven-day
measures. Thus the moving average bridging coefficient could further
reduce the outlying and abnormal spectral reflectance in the satellite
time series caused by atmospheric interferences.

With the pheno-network model, the phenological transition dates
during the downward period were estimated for all relatively pure corn
and soybean pixels in Illinois. The cumulative percentages of the
transition dates were calculated and summarized according to ASDs
from 2002 to 2017. For corn, this cumulative percentage of the tran-
sition dates was compared to the ground reference cumulative per-
centage of corn going through the dough, dent, mature, and harvest
stages, respectively (Fig. 5, with 2006 as an example). In light of the
ground survey data, corn entering the dough stage varied from location
to location in 2006, with the earliest around DOY 183 and the latest
around DOY 239. Across the ASDs, the median date of the dough stage
of corn in the southern districts was around 8 days earlier than that of

Fig. 4. Network measures of crop phenology to estimate the critical phenological transition date.
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the central districts, which was on average 7 days before that in the
northern districts. Following the dough stage, corn went into the dent
stage from DOY 225 to 253, then to the mature stage from DOY 246 to
281, and finally to the harvest stage from DOY 260 to 316. The cu-
mulative percentage of the transition dates estimated through the
pheno-network model ranged from DOY 241 to 276, and was found to
align well with that of the mature stage of corn (Fig. 5). In 2006, the
median ground observation date of corn entering the mature stage
throughout Illinois was DOY 256, which was the same as the median
transition date (i.e., DOY 256) estimated using the pheno-network
model.

The cumulative percentage of the retrieved phenological transition
dates was also calculated for soybean, which was compared to the
ground reference cumulative percentage of soybean entering the setting
pods, turning yellow, dropping leaves, and harvest stages, respectively
(Fig. 6, with 2006 as an example). According to the ground reference
data, soybean started to set pods during the reproductive stages from
DOY 190 to 239 throughout Illinois. Following the setting pods stage,
the leaves of soybean turned yellow around DOY 246 to 267, and ty-
pically started to drop one week after. Similar to corn, soybean also
exhibited spatial variation in phenological development across

agricultural districts. Affected by a combination of climate factors and
management strategies, the median date of the dropping leaves stage of
soybean in the southern districts was about one week behind that in the
central and northern districts. Subsequently, the soybean was har-
vested, with the date varying from DOY 274 to 316. The cumulative
percentage of the derived transition dates was compared to those four
phenological development stages of soybean, and was found to be more
correlated with that of the dropping leaves stage of soybean (Fig. 6).
Throughout Illinois, the median date of soybean (i.e., DOY 264) going
into this phenological stage in terms of ground observations was one
day different from that of the pheno-network derived estimate (i.e.,
DOY 263) in 2006.

The retrieved phenological transition dates from the pheno-network
model were summarized for both corn and soybean at the state level
from 2002 to 2017 (Figs. 7 and 8). As regards corn, the cumulative
percentage of the transition dates over time was shown as the dashed
line, and the cumulative percentage of corn achieving the mature
phenological stage was depicted as the solid line in Fig. 7. In most of the
monitoring years, the phenological pattern of the ground-observed
mature stage throughout Illinois could be approximated by that of
pheno-network derived measures. These two cumulative curves aligned

Fig. 5. Comparisons between the cumulative percentage of the transition dates and ground reference cumulative percentages of corn going into the dough, dent,
mature, and harvest stages in 2006 at the district level.

C. Diao ISPRS Journal of Photogrammetry and Remote Sensing 153 (2019) 96–109

102



with each other well. Due to the weekly observation interval for ground
crop phenology and the missing data issue in CPRs, we further eval-
uated the alignment by focusing on calculating the difference between
the median date of corn in the mature stage and the median of the
estimated transition dates (Table 1). During 2002 to 2017, the absolute
difference of median dates varied from 0 to 10 days, with an average of
4.5 days. These comparisons indicated that the retrieved phenological
transition date was characteristic of the mature stage of corn. At this
phenological stage, corn is about ready to harvest with shucks opening.
The foliage of corn turns yellow, with no green color tone remaining.
The spectral reflectance of corn is different from that in the preceding
growth stages (e.g., dough and dent stages) and from that in the suc-
ceeding stages (e.g., harvest). It serves as the transition from green leaf-
dominating spectral reflectance to soil-dominating harvest reflectance.

The moving average bridging coefficient was calculated for each
spectral node in the pheno-network. The phenological transition date,
identified by the maximum moving average bridging coefficient value,
indicated that the spectral node on that date was a connecting hub
linking all the spectral reflectance across the crop growth stages. As the
bridging coefficient was a synthesized measure of betweenness cen-
trality and clustering coefficient, the neighbors of the identified spectral

node tended to be loosely connected between themselves because of the
rapid change of spectral reflectance during the transition period. The
spectral node at the phenological transition date had significant con-
trols on the spectral dynamic changes along the crop leaf senescence
trajectory. Characterized by a combination of changing leaf color, leaf
water content, and leaf cell structure, the nodes at the mature stage of
corn in the pheno-network are spectrally distinct, yet serve as the
transitional bridge connecting the nodes from the leaf-on dough (or
dent) stage to the leaf-off harvest stage. The unique network structure
formulated according to spectral similarities is characteristic of the
complex phenological process, and the network measures can be em-
ployed to estimate transition dates with critical phenological implica-
tions. This mature stage of corn has not been adequately captured in
previous remotely sensed phenological studies (but see Sakamoto
(2018) for phenological estimates with prior information), yet can be
represented by the pheno-network model.

The phenological transition dates of soybean retrieved by the
pheno-network model at the state level were summarized in Fig. 8.
From 2002 to 2017, the cumulative percentage of remotely sensed
transition dates throughout Illinois was compared to that of soybean
going into the dropping leaves phenological stage on ground. As shown

Fig. 6. Comparisons between the cumulative percentage of the transition dates and ground reference cumulative percentages of soybean entering the setting pods,
turning yellow, dropping leaves and harvest stages in 2006 at the district level.
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in Fig. 8, this remotely sensed cumulative estimation result aligned well
with the ground-based phenological observations in most years. The
phenological pattern of the dropping leaves stage of soybean
throughout Illinois was closely correlated with that of the pheno-net-
work retrieved measures. The median of the estimated transition dates
ranged from DOY 251 to 275 across the years (Table 1). Comparably,
the median date of soybean entering the dropping leaves stage from
CPRs varied from DOY 256 to 273. The absolute difference of median
dates varied from 1 to 10 days, with an average of 4.4 days. The com-
parisons revealed that the dropping leaves phenological stage of soy-
bean could be remotely retrieved by the pheno-network model with
satellite time series. At this growing stage, the leaves of soybean are
30–50% yellow and the leaves near the bottom part start dropping.
Similar to the mature stage of corn, the spectral reflectance of soybean
at the dropping leaves stage (e.g., leaves changing to a yellowish tone
with decreasing water content) exerts a critical transitional role in
connecting the spectral reflectance across the phenological stages in the
pheno-network. It serves as the transitional bridge from the green leaf-
dominating growth stages (e.g., setting pods and turning yellow) to the
soil-dominating harvest phenological stage. Therefore, the temporal

dynamic changes of spectral reflectance of both corn and soybean along
the phenological trajectory can be represented via network structures.
The critical phenological transition dates can then be estimated through
the corresponding network measures.

To further evaluate how remotely retrieved phenological transition
dates reconcile with ground-based phenological observations, the
median dates retrieved by the pheno-network model and by the curve-
fitting based method were compared at the ASD level using R square
and RMSE (Fig. 9). For each ASD, the median of pheno-network re-
trieved (or curve-fitting retrieved) transition dates for every year
(horizontal axis in Fig. 9) was plotted against the median date of crop
achieving the most relevant growth stage, namely the mature stage of
corn or dropping leaves stage of soybean (vertical axis in Fig. 9). The
one-to-one line in Fig. 9 denoted that remotely retrieved and ground
observed median measures matched each other exactly. As for corn,
most of these comparison pairs by the pheno-network model were
distributed along the one-to-one line, with the R square being 0.55 and
the RMSE being 7.77 days. It indicated that about 55% percent of
variability in the median dates of ground-observed mature stage of corn
could be explained by the pheno-network based measures. The average

Fig. 7. Comparisons between the cumulative percentage of the transition dates and the ground reference cumulative percentages of corn going into the mature stage
at the state level from 2002 to 2017.
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of the difference between the network- and ground-based maturity
measures was around 7 days. Given the weekly observation frequency
of CPRs and the compositing process in the daily 16-day MODIS data,
the 7-day difference should be adequate for demonstrating the cap-
abilities of the devised pheno-network model in retrieving critical crop
growth transition dates, particularly for large-scale repetitive estima-
tion. As for the curve-fitting based method, most of these comparison
pairs were distributed below the one-to-one line, with the R square
being 0.56 and the RMSE being 26.8 days. It indicated that the median
transition dates estimated by the curve-fitting method were about
3–4 weeks later than the median dates of ground-observed mature stage
of corn. Thus this critical phenological stage of corn might not be ap-
propriately represented by the curve-fitting retrieved phenological
measures.

As regards soybean, the comparison pairs by the pheno-network
model at the ASD level were also distributed along the one-to-one line
(Fig. 9). The R square value was 0.55 and the RMSE value was
5.05 days. About 55% percent of variability in the median dates of field-
based dropping leaves stage of soybean was explained by the median of
estimated transition dates. The average of the difference between the

network- and ground-based phenological measures was about 5 days. In
Fig. 9, the comparison pairs for soybean were mostly distributed within
the temporal window DOY 250 to 280 across ASDs throughout the
years, while the comparison pairs for corn were distributed in a wider
temporal range DOY 230 to 285. It indicated that, compared to the
dropping leaves stage of soybean, there was higher spatial and inter-
annual variability in the mature stage of corn throughout Illinois.
Though the further comparative analysis was beyond the scope of this
study, the comparable and relatively high R square values suggested
that the spatio-temporal variability in the ground phenological ob-
servations could be captured by the pheno-network derived measures.
With respect to the curve-fitting based method, most of the comparison
pairs were below the one-to-one line, with the R square being 0.5 and
the RMSE being 22.36 days. Comparable to corn, the median transition
dates estimated by the curve-fitting method were noticeably later than
the median dates of ground-observed dropping leaves stage of soybean.
The curve-fitting derived phenological measures of soybean were about
2–3 weeks after its dropping leaves stage.

As the turning yellow stage and dropping leaves stage of soybean
were closely related and typically one week apart (e.g., Fig. 6), we

Fig. 8. Comparisons between the cumulative percentage of the transition dates and the ground reference cumulative percentage of soybean entering the dropping
leaves stage at the state level from 2002 to 2017.
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further evaluated the alignment between the median date of soybean
going into the turning yellow stage and that of the pheno-network es-
timated transition dates (Fig. 10). As shown in Fig. 10, the comparison
pairs shifted away from the one-to-one line, with the RMSE value in-
creasing to 10.59 days and R square value decreasing to 0.47. Despite
the amount of variability in this turning yellow stage explained by the
pheno-network measures, the increasing difference between these two
measures and the deviation from the one-to-one line suggested that the
estimated transition dates might not be directly indicative of the
turning yellow stage of soybean. In general, these quantitative measures
conducted at the ASD level implied that the transition dates estimated
by the pheno-network model had remarkable phenological implica-
tions. The critical phenological stages (i.e., the mature stage of corn and
the dropping leaves stage of soybean), which may not be adequately
captured with conventional phenological models, can be retrieved via
innovative network structures.

One significant challenge in conventional phenological models is
the requirement of year-long satellite observations for model building.
In contrast, the pheno-network model can be constructed with partial-
year remote sensing data. A sensitivity analysis was conducted in this

study to evaluate the influence of the temporal window size on the
retrieved phenological transition dates. With reference to field crop
phenological stages, the size of the temporal window for constructing
the pheno-network model changed from 140 days (DOY 191–330) to
20 days (DOY 251–270), with an increment of 10 days. With respect to
each temporal window, the median date of the estimated transition
dates was compared to that of the corresponding ground-observed
phenological stage at the ASD level using R square and RMSE (Fig. 11).

With the increasing size of the temporal window, the R square value
for corn rose from 0.15 to 0.61 and the RMSE value decreased from
about 10 to 7 days. When the size of the temporal window increased to
80 days, the R square value achieved 0.5, along with the RMSE value
decreasing to around 8 days. Hence, the pheno-network model showed
great potential in estimating the mature stage of corn within a limited
temporal observation period. Compared to corn, the R square and
RMSE values of soybean changed even more drastically with the in-
crement of the temporal window size. The R square value approached
0.5 and the RMSE value decreased to around 5.5 days with a temporal
window size of 40 days. This more rapid increase of R square values and
decrease of RMSE values may be attributable to two factors. First,
soybean typically has a shorter growing season than corn. The transi-
tion date for soybean is more inclined to be identified than that for corn
given a limited temporal window. Second, the dropping leaves stage of
soybean exhibits lower spatial and inter-annual variability across ASDs,
compared to the mature stage of corn (Fig. 9). The sensitivity analysis
revealed that the pheno-network model could be built with partial-year
satellite observations. The network structure for identifying the phe-
nological transition dates was relatively robust to the change of the
number of spectral nodes arising from the changing temporal window
size.

5. Discussion

In recent years, complex networks have been increasingly utilized in
a variety of disciplines, ranging from social science to biological sci-
ence, to investigate the associations and relationships between the
constituents of complex systems. The network representation is de-
signed to capture the most fundamental structure and pattern of key
components in a system. The flexibility of defining the nodes and edges
in complex networks opens up unique opportunities to understand and
characterize collective behaviors of inter-connected components in
complex systems. This continuously flourishing network representation
has nurtured breakthrough discoveries and insights in a wealth of
fields, yet it has seldom been explored in time series remote sensing.

Table 1
Comparisons between the median of pheno-network retrieved transition dates
and the median date of corn in the mature stage (left), or soybean in the
dropping leaves stage (right) at the state level from 2002 to 2017.

Year Corn (mature stage) Soybean (dropping leaves stage)

Ground
reference
(DOY)

Pheno-network
estimated (DOY)

Ground
reference
(DOY)

Pheno-network
estimated (DOY)

2002 260 258 265 259
2003 260 253 265 255
2004 257 247 260 257
2005 253 256 256 257
2006 256 256 264 263
2007 247 250 256 251
2008 271 265 271 269
2009 281 281 273 267
2010 246 246 257 262
2011 256 266 265 267
2012 241 251 262 265
2013 266 274 268 275
2014 262 260 266 262
2015 252 247 262 257
2016 259 255 267 261
2017 265 263 266 262

Fig. 9. Comparisons between the median of remote sensing retrieved transition dates and the median date of corn in the mature stage (left), or soybean in the
dropping leaves stage (right) at the district level using R square and RMSE.
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The potential of complex networks in representing the complex crop
phenological progress with satellite time series was hence investigated
in this study.

The pheno-network model provides an innovative phenological re-
presentation of crop through modeling the temporal dynamics of its
spectral reflectance along the leaf senescence trajectory. This network
representation characterizes the structure of relationships between the
spectral reflectance to estimate the critical phenological transition
dates. In the pheno-network, the nodes are defined as the spectral re-
flectance of crops on each observation date, and the edges are defined
according to the spectral similarities between the nodes. The tolerance
value controls the structure of the entire network. The moving average
bridging coefficient is devised as the network measure to capture the
spectral nodes that serve as the transitional bridge in linking the
spectral reflectance across the phenological stages. By integrating be-
tweenness centrality and clustering coefficient, this synthesized mea-
sure weights the neighborhood connection effects to identify the spec-
tral nodes as the connecting hub in the network. This new phenological

representation was able to estimate the crop phenological transition
dates in Illinois, particularly the mature stage of corn and the dropping
leaves stage of soybean, with high accuracy achieved. At the ASD level,
the R square values for both corn and soybean are 0.55. The RMSE
values for corn and soybean are 7.77 and 5.05 days, respectively. The
pheno-network model shows marked potential to extract crucial crop
phenological characteristics, complementary to the conventional phe-
nological methods.

Compared to conventional curve-fitting based phenological
methods, the pheno-network model maintains several distinct char-
acteristics and potential advantages. First, the pheno-network model
does not assume that crop phenological processes follow specific
mathematical functions. Without limiting the phenological processes to
defined mathematical forms, this non-parametric model may be more
adequate to characterize the complex crop phenological trajectory,
particularly in diversified and intensified agricultural systems. Second,
the pheno-network model can be constructed with partial-year remote
sensing data. Unlike the conventional curve-fitting based phenological

Fig. 10. Comparisons between the median of pheno-network retrieved transition dates and the median date of soybean in the dropping leaves stage (left), or the
turning yellow stage (right) at the district level using R square and RMSE.

Fig. 11. The R square and RMSE values of the pheno-network retrieved results with varying temporal window sizes.
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methods, the pheno-network does not require the year-long data for
model building. The sensitivity analysis conducted in this study in-
dicates that the pheno-network model can be built within a limited
temporal observation period (e.g., 80 days for corn). The pheno-net-
work model is relatively robust to the change of the temporal window
size for estimating critical phenological transition dates. Third, the
pheno-network model tracks the collective change of spectral re-
flectance for phenological estimation. Remotely sensed crop phenology
is typically monitored using the time series of vegetation index (e.g.,
NDVI, enhanced vegetation index [EVI], and wide dynamic range ve-
getation index [WDRVI]). As vegetation indices are developed for
characterizing specific vegetation properties, the adoption of different
vegetation indices may yield different or even conflicting phenological
estimation results (Tornos et al., 2015). Tracking the collective change
of spectral reflectance along the phenological trajectory may be an al-
ternative solution, given the vegetation properties (e.g., chlorophyll
content, water content, and leaf cell structure) can be characterized by
a multitude of spectral wavelengths. Therefore, with these unique
characteristics, the pheno-network model provides an innovative per-
spective in representing the crop phenological process. In this study, the
retrieved phenological estimates, in alignment with ground phenolo-
gical observations, also indicate that the pheno-network model shows
great promise in monitoring the crop growth progress and under-
standing its subsequent response to climate and environmental changes.

Along the leaf senescence trajectory, the estimated critical pheno-
logical transition periods via the pheno-network model are the mature
stage for corn and the dropping leaves stage for soybean. Corn and
soybean share comparable traits during their respectively detected
stages. Their leaves change to yellowish tones, with drastic chlorophyll
and water content change. Corn is about to harvest within 2–4 weeks
and soybean is about to harvest within 2–3 weeks. Hence, accurate
estimation of those phenophases are imperatively crucial for opera-
tional harvest preparation and scheduling to reduce pre-harvest loss.
The crop growth conditions at those phenophases are important for
crop management and yield estimation. Remotely sensed retrieval of
crop growth stages may further shed light on the crop phenological
responses to climate change and environmental stress, as well as the
changing farm management practices and strategies (e.g., development
of new crop genotypes) (Kucharik, 2006). Yet those critical pheno-
phases have not been adequately captured by previous studies. With the
curve-fitting (i.e. double logistic) based phenological method, Gao et al.
(2017) retrieved the dormancy dates for both corn and soybean in
central Iowa using satellite time series. The dormancy date retrieved for
corn was found to be between its mature and harvest stages. The re-
trieved dormancy date for soybean was between the dropping leaves
and harvest stages. Given the phenological implications of those
growing stages, it would be desired to have more accurate retrieval
results from remote sensing.

Validating the remotely sensed phenology with ground-based ob-
servations remains one of the most significant challenges in phenolo-
gical studies. The ground-based phenological measure of individual
crop may not match with that of 500m spatial coverage of an in-
dividual pixel in the MODIS imagery. Besides, the field observation
locations of crop phenology are proprietary and not available to the
public in CPRs. Only the aggregated phenological observations at the
ASD- or state-levels are released by NASS. At the ASD level, the good
alignment between ground-based and remotely sensed crop phenology
in this study demonstrates the potential of the proposed pheno-network
model in estimating critical crop phenological transition dates. Despite
being the most comprehensive dataset throughout Illinois, the ASD- or
state-level phenological aggregates and the CDL-based MODIS ag-
gregates may bring some uncertainties to the evaluation results. The
recent initiative in near-surface remote sensing (e.g., unmanned aerial
vehicle and phenocam) may provide solutions to collect geo-referenced
ground phenological observations of crops in a more systematic and
objective fashion, which may facilitate the pixel-based phenological

evaluation and reduce the uncertainties arising from the ASD-level
comparisons (Richardson et al., 2018). It would be conducive to explore
those near-surface remote sensing techniques in future studies.

Remote monitoring of crop phenological progress at 500m spatial
resolution benefits the large-scale crop management and yield estima-
tion. The pixel-based phenological estimates, beyond the ASD-level,
provide farmers substantial information at finer spatial granularity to
advance crop and farm management strategies that can ultimately al-
leviate environmental stresses in crops and improve crop productivity
(Wu et al., 2013; Zhou et al., 2017). With its daily 16-day compositing
and BRDF-corrected properties, the MCD43A4 data is a desired candi-
date for conducting the repetitive phenological monitoring over wide
geographical regions through time. Despite its high temporal revisit
frequency, its coarse spatial resolution (i.e., 500m) may make it in-
adequate for capturing field-level crop phenological dynamics, parti-
cularly in smallholder agricultural systems. Under those circumstances,
it may be conducive to build the satellite time series by synthesizing the
higher spatial resolution imagery (e.g., Landsat and Sentinel-2) with the
MODIS imagery using data fusion algorithms (Feng et al., 2006). With
both higher spatial and temporal resolutions (e.g., daily imagery at
30m spatial resolution), the fused imagery may help retrieve more
comprehensive phenological information to further benefit the small-
holder agricultural systems.

6. Conclusions

In this study, we estimated the critical phenological transition dates
of crops via an innovative pheno-network model. Rooted in network
theory, this model characterizes the complex phenological process with
spectrally defined nodes and edges. It provides a network representa-
tion to model the temporal dynamics of spectral reflectance of crops
along the phenological trajectory. With the moving average bridging
coefficient measure, the pheno-network model attempts to capture the
spectral nodes that serve as the transitional bridge linking the nodes
across the phenological stages, and to estimate the corresponding
transition dates. The pheno-network model was utilized to represent the
phenological progress of corn and soybean in Illinois from 2002 to
2017. With reference to the ASD-level ground phenological observa-
tions, the detected transition dates for corn were found to align with its
mature stage. The R square was 0.55 and the RMSE was 7.77 days. As
for soybean, the estimated transition dates corresponded to its dropping
leaves stage, with the R square being 0.55 and the RMSE being
5.05 days. Compared to conventional phenological methods, the non-
parametric pheno-network model does not make mathematical as-
sumptions of crop phenological processes, and can be constructed with
partial-year remote sensing data. The pheno-network model, with those
unique characteristics, shows great promise to improve the phenolo-
gical monitoring in complex and intensified agricultural systems.
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