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Abstract: Detecting crop phenology with satellite time series is important to characterize agroecosys-
tem energy-water-carbon fluxes, manage farming practices, and predict crop yields. Despite the
advances in satellite-based crop phenological retrievals, interpreting those retrieval characteristics
in the context of on-the-ground crop phenological events remains a long-standing hurdle. Over the
recent years, the emergence of near-surface phenology cameras (e.g., PhenoCams), along with the
satellite imagery of both high spatial and temporal resolutions (e.g., PlanetScope imagery), has largely
facilitated direct comparisons of retrieved characteristics to visually observed crop stages for pheno-
logical interpretation and validation. The goal of this study is to systematically assess near-surface
PhenoCams and high-resolution PlanetScope time series in reconciling sensor- and ground-based
crop phenological characterizations. With two critical crop stages (i.e., crop emergence and maturity
stages) as an example, we retrieved diverse phenological characteristics from both PhenoCam and
PlanetScope imagery for a range of agricultural sites across the United States. The results showed
that the curvature-based Greenup and Gu-based Upturn estimates showed good congruence with
the visually observed crop emergence stage (RMSE about 1 week, bias about 0–9 days, and R square
about 0.65–0.75). The threshold- and derivative-based End of greenness falling Season (i.e., EOS)
estimates reconciled well with visual crop maturity observations (RMSE about 5–10 days, bias about
0–8 days, and R square about 0.6–0.75). The concordance among PlanetScope, PhenoCam, and visual
phenology demonstrated the potential to interpret the fine-scale sensor-derived phenological charac-
teristics in the context of physiologically well-characterized crop phenological events, which paved
the way to develop formal protocols for bridging ground-satellite phenological characterization.

Keywords: crop phenology; PhenoCam; PlanetScope; high resolution; near-surface

1. Introduction

Vegetation phenology regulates the biosphere’s seasonal carbon, nutrient, and water
dynamics, and is a first-order control on ecosystem processes and productivity [1–4]. It is
also a sensitive indicator of the biological impacts of climate change and mediates vegeta-
tion feedbacks to the climate system by influencing the biogeochemical and physical pro-
cesses (e.g., carbon sequestration, surface albedo, and energy balance) [5–8]. In agricultural
systems, crop phenology maintains a crucial role in estimating crop net primary production
and yields, modeling surface energy-water-carbon fluxes, and managing farming practices
(e.g., irrigation scheduling, fertilizer management, and harvesting operations) [9–11]. These
crop management activities largely depend on crop phenological development stages,
as biochemical and physiological characteristics (e.g., light use efficiency) of crops differ
seasonally along the growth trajectory [12]. The crops at different phenological stages
exhibit divergent responses to environmental changes and weather anomalies [12–14]. For
instance, the anthesis stage of corn is particularly susceptible to heat stress, and elevated
temperature at this stage has damaging effects on the corn growth, causing subsequent
yield loss [15,16]. As climate change is inclined to increase the frequency of heat stress and
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other extreme weather events, detecting the crop phenological progress throughout the
season is critical in supporting resilient and sustainable agricultural development.

Time series of satellite imagery facilitates the characterization of crop phenological
patterns over space and time and expands the scope of crop phenological monitoring be-
yond traditional field observations [17–19]. The remotely sensed spectral reflectances and
derived vegetation indices across the electromagnetic regions have been widely studied to
track the seasonal dynamics of crop growth, and to derive critical phenological transition
dates (e.g., onset of greenness) in association with crop biological growth stages (e.g., crop
emergence) [20,21]. Specifically, a range of curve-fitting-based phenological models has been
developed to smooth the satellite time series as well as to capture the seasonal variations
in crop canopy development along the phenological trajectory [22]. Those curve-fitting-
based models include the double logistic function and its variants, the Quadrat function,
the Savitzky-Golay function, the Fourier transform (or harmonic) function, the wavelet
function, the asymmetric Gaussian function, and the spline-relevant functions [23–27]. With
the modeled seasonal dynamics through satellite time series, crop phenological transition
dates characteristic of biological events of canopy phenology can further be extracted using
phenophase analysis methods. The phenophase analysis methods include the threshold-
based method (e.g., defined thresholds based on the curve amplitude), the curve derivative
method (e.g., first and second derivatives of the curve), the curvature change rate method
(e.g., extremes in curvature change rate of the curve), the moving average method (e.g., a
departure from the moving average-based trend), and the pheno-network method (e.g.,
bridging coefficient in the phenology-tailored complex network) [28–32]. Those methods
are designed to characterize distinct changes in canopy biophysical or biochemical proper-
ties that tend to be connected with crop phenophase transitions. In particular, Diao [19]
developed a remote sensing phenological monitoring framework that systematically inte-
grates a combination of curve-fitting and phenophase analysis methods for crop phenologi-
cal characterization, and found that a range of corn and soybean phenological stages can
be estimated under the devised framework with the phenological reference of district-level
Crop Progress Reports (CPRs), the United States Department of Agriculture (USDA). To
date, remotely sensed time series analysis of crop phenology has been mostly conducted at
coarse spatial resolutions, as a tradeoff of the satellites (e.g., Moderate Resolution Imaging
Spectroradiometer [MODIS]) to secure high temporal revisit rates for repeated monitoring.
However, the pixels at coarse spatial resolutions may contain a heterogeneous matrix of
agricultural fields with varying planted and harvested schedules, which confounds the
crop phenological signal and makes it challenging to be connected to field-based crop
phenological observations, particularly for smallholder and precision agricultural systems.
The decoupling between satellite- and field-based phenological characterizations caused
by the scale disparity has remained a significant hurdle in the phenological studies [33].

Over the recent years, near-surface remote sensing (e.g., digital repeat photography
and Drone imagery) has emerged as valuable tools for bridging the gap between ground-
based phenological observations at local scales and satellite-based phenological measures at
ecosystem scales [34–36]. In particular, the North American PhenoCam network, initiated
in 2008, is established to provide systematic and consistent canopy phenological monitoring
with unifying observation protocols using digital cameras, and now includes more than
500 camera sites across different biomes [37–39]. Similar phenological camera networks
have also been established in Europe (e.g., European Phenology Camera Network), Japan
(e.g., Japanese Phenological Eyes Network), Australia (e.g., Australian PhenoCam Net-
work), etc., [40–42]. Those phenological cameras can take repeated photos of vegetation
in time-lapse mode (e.g., every 30 min from sunrise to sunset of the day) from a fixed
position in the field to track vegetation dynamics throughout the season [43,44]. On one
hand, the high-frequency digital repeat photography embodies rich color and structural
information of vegetation to enable systematic visual phenological interpretations over
the course of a year. On the other hand, the digital numbers recorded by the photography
and derived indices (e.g., Green Chromatic Coordinate [GCC]) can be analyzed in a time
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series fashion, analogous to satellite time series phenological analysis, to track the canopy
seasonal phenological development trajectory at the organism-to-ecosystem level. The
phenophase transition dates (e.g., onset of greenness) can subsequently be extracted from
such seasonal trajectory for sensor-based phenological characterizations [35,45]. With the
dual potential roles, the phenological cameras have been explored to evaluate and validate
the satellite-based (e.g., MODIS, Advanced Very High Resolution Radiometer (AVHRR),
Visible Infrared Imaging Radiometer Suite (VIIRS), and Landsat) phenological measures, to
refine the phenological and earth system models, and to study the vegetation responses
to climate change [34,35,46–51]. Yet most of those near-surface remote sensing studies
have been focused on forest and grassland ecosystems [35,46–48,50,51]. Little attention has
been directed to assessing the linkage between sensor-derived phenological characteristics
and visually observed crop growth stages in agricultural systems. Despite the fine-scale
enhanced phenological monitoring, near-surface remote sensing may be limited by its
spatial coverage, time span, and sensor geometry and configurations.

Apart from near-surface remote sensing, the accelerated development of satellite re-
mote sensing opens up new opportunities to reconcile ground-level crop scouting and
satellite-based agricultural phenological monitoring. During the past several years, the
emergence of innovative satellite platforms, namely satellite constellations, has largely
boosted our capability to monitor land surface dynamics. The PlanetScope satellite constel-
lation (more than 130 CubeSats with the 3-unit form factor of 10 × 10 × 30 cm, and a mass of
approximately 4 kg), launched by Planet Labs, can provide the near nadir-view coverage of
the earth on a daily basis at fine spatial resolutions (i.e., 3–5 m spatial resolution) [52]. With
the improved spatial and temporal characteristics, the PlanetScope imagery can potentially
address the mixed phenology issue due to landscape heterogeneity under relatively coarse
satellite spatial resolutions, as well as resolve the spatial coverage and potential sensor lim-
itations of near-surface remote sensing [53–56]. It may shed light on how satellite-derived
phenological measures can be aligned with field-observed crop phenological growth stages,
particularly in spatially fragmented and heterogeneous landscapes. The PlanetScope time
series has been found to improve the phenological characterizations in forest and rangeland
systems [57–60]. In agricultural systems, this high-resolution imagery has been explored to
detect the crop sowing and growth stages at the field scale [61,62]. However, there is still
a dearth of research rigorously validating the crop phenological growth characterization
results from this high-resolution imagery with regard to on-the-ground crop stage progress.

The goal of this study is to systematically assess near-surface phenological cameras
and high-resolution satellite time series in reconciling sensor- and ground-based crop
phenological characterizations. As the two most critical means to detect crop phenology
at fine scales, near-surface and high-resolution remote sensing provide distinct yet com-
plementary measures to facilitate direct comparisons to visually observed crop stages for
phenological validations, a long-standing challenge in phenological studies. Specifically,
we aim to (1) interpret the fine-scale sensor-derived phenological characteristics in the
context of visually-observed crop phenological events, (2) evaluate the role of the near-
surface phenological cameras in characterizing the crop phenological dynamics with a
diverse range of corn and soybean PhenoCam sites, and (3) systematically compare a set of
phenological measures from high-resolution PlanetScope imagery, PhenoCams, and visual
observations for coupled ground and sensor-based crop growth characterizations. Despite
the increasing use of PhenoCam-derived phenological metrics to validate satellite-based
ones, the fine-scale crop phenological comparison between PhenoCam and PlanetScope
imagery is lacking. The enhanced understanding of fine-scale phenological characteriza-
tions in association with ground crop growth observations will benefit more precise and
sustainable stage-specific agricultural management, especially in spatially heterogeneous
or smallholder agricultural systems.
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2. Materials and Methods
2.1. Study Sites and Data

As the two most cultivated crops in the US, corn, and soybean are selected for pheno-
logical characterization in this study. Our study sites comprise major corn and soybean
sites in the US of the North American PhenoCam network, with longitudes spanning from
100.93◦W to 121.54◦W, and latitudes from 38.11◦N to 46.76◦N (Figure 1). The study sites
include the Kingman Farm Site (Strafford County, NH, USA), Kellogg Biological Station
Site (Barry County, MI, USA), USDA-ARS Hawbecker Farm Site (Huntingdon County, PA,
USA), Peat SSJ River Delta Bouldin Island Site (San Joaquin County, CA, USA), US-Ne1-3
Maize-Soybean Site (Saunders County, NE, USA), USDA Economic and Environmental
Research Site (Prince George’s County, MD, USA), Swan Lake Research Farm Site (Stevens
County, MN, USA), ARS Morris Minnesota LTAR South Tower Site (Stevens County, MN,
USA), Dryland Cropping System Site (Morton County, ND, USA), Rosemount Conven-
tional AG Management Site (Dakota County, MN, USA), and University of Illinois Energy
Farm Site (Champaign County, IL, USA) (Table 1). Those sites are selected with the careful
assessment of the camera configuration (e.g., field of view and white balance), image
availability and quality (e.g., illumination geometry and weather conditions), and site
characteristics (e.g., cropping system and landscape homogeneity) [38,63].
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Table 1. Overview of the PhenoCam study sites and site characteristics.

Study Site Latitude
(Degree)

Longitude
(Degree) Elevation (m) Site Type Camera

Orientation Year Crop Type

A: Kingman Farm 43.17 −70.93 90 Type I NA 2017–2018 Corn
B: Kellogg Biological Station 42.44 −85.32 288 Type I and II NA 2016–2019 Corn, Soybean
C: USDA-ARS Hawbecker Farm 40.66 −77.85 310 Type I N 2017–2018 Corn
D: Peat SSJ River Delta Bouldin
Island 38.11 −121.54 −5 Type I WNW 2018–2019 Corn

E: US-Ne1-3 Maize-Soybean Sites 41.16 −96.47 361 Type I NA 2017–2019 Corn, Soybean
F: USDA Economic &
Environmental research 39.03 −76.84 41 Type I N 2018–2019 Corn, Soybean

G: Swan Lake Research Farm 45.68 −95.80 370 Type I NNW 2016–2019 Corn, Soybean
H: ARS Morris. Minnesota LTAR
South Tower 45.62 −96.13 341 Type I N 2018–2019 Corn, Soybean

I: Dryland Cropping System 46.76 −100.93 590 Type I N 2017–2018 Corn, Soybean
J: Rosemount Conventional AG
Management Site 44.69 −93.06 283 Type I N 2017–2019 Corn, Soybean

K: University of Illinois Energy
Farm 40.06 −88.20 224 Type I and II N 2011–2019 Corn, Soybean

The near-surface PhenoCam imagery of all the sites for the years 2010–2019 was
acquired from the PhenoCam server (https://phenocam.sr.unh.edu/webcam/; accessed
on 15 November 2020). The number of years for each site may vary, depending on the
timing of site establishment. The PhenoCam imagery includes three bands (i.e., blue, green,
and red), and provides the canopy-scale observation of crops, with each one taken about
every 30 or 60 min throughout the year. In this study, only the images from 10:00 a.m.
to 2:00 p.m. local time are considered to reduce the influence of illumination difference
and atmospheric interference [44]. Most of the sites are type I or type II sites (Table 1).
Type I sites utilize prescribed NetCam SC IR cameras (StarDot Technologies, Buena Park,
CA, USA), and type II sites do not use the prescribed NetCam cameras. Yet for both site
types, the cameras are generally deployed via a standardized phenological monitoring
protocol with site personnel actively engaged in camera maintenance to ensure the image
quality [38]. Specifically, the cameras are mounted to towers (or other secure points) taller
than the crops of interest and are angled downward at 20–40◦ to obtain canopy views of the
crops. The cameras are typically pointed north to minimize shadow and lens flare effects
and are set to a fixed white balance to eliminate confounding variation in imaging sensor
response. Some sites may contain several cameras, with each monitoring an agricultural
field. For example, the US-Ne1-3 Maize-Soybean site has three cameras, which point to
the US-Ne1 irrigated continuous maize field, the US-Ne2 irrigated maize-soybean rotation
field, and the US-Ne3 rainfed maize-soybean rotation field, respectively. We then removed
the site-years with images of relatively low quality or significant amount of missing data
during the growing season to ensure the quality of PhenoCam observations. In total, there
are 41 PhenoCam site-year observations for corn, and 16 PhenoCam site-year observations
for soybean.

Besides the PhenoCam imagery, we also acquired the PlanetScope surface reflectance
(Version 2.0) time series of the study sites from 2017 to 2019. The PlanetScope imagery is
under the near nadir-view and has four bands (i.e., blue, green, red, and near-infrared),
with a 3.7 m average ground sample distance and daily revisit frequency. The PlanetScope
imagery was atmospherically corrected to surface reflectance using the 6S atmospheric
model by the Planet Labs and was then filtered using the associated quality assurance
layer, followed by the visual inspection, to remove the images that were contaminated
by snow, cloud, and cloud shadow. With the year-long PlanetScope time series available
starting from 2017, the number of PlanetScope site-year observations is a subset of that
of PhenoCam site-year ones. Across the study sites, there are 21 PlanetScope site-year
observations for corn and 10 PlanetScope site-year observations for soybean. The average
number of cloud-free PlanetScope images per month varies across the study sites, with
about 6 to 10 images per month during the growing season for most of the sites (Figure 2).

https://phenocam.sr.unh.edu/webcam/
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The study sites are denoted using the site letters in Figure 1.

2.2. Methodology
2.2.1. Imagery Pre-Processing

For the PhenoCam imagery of each study site, we first delineated a region of interest
(ROI) of the crop canopy in the imagery for the subsequent phenological analysis. The
ROI was delineated to cover the crop canopies located in the foreground of imagery to be
representative of the broader landscape of each site while avoiding the non-target species
(e.g., weed), soil, and sky. Delineation of an ROI in the foreground further diminished the
effects of adverse weather conditions (e.g., cloud and fog), which could negatively affect
the quality of characteristic phenology from PhenoCams [46]. The GCC time series of the
ROI was then extracted from the imagery. GCC was calculated using Equation (1).

GCC =
GDN

RDN + GDN + BDN
(1)

Here, GDN , RDN , and BDN denote the average pixel digital numbers over the ROI for
the green, red, and blue bands of the imagery, respectively.

GCC was developed to characterize the canopy greenness and had been extensively
used in the RGB (red, green, and blue) imagery for monitoring canopy seasonal dynam-
ics [37,63]. As GCC values tended to be reduced by snow or sub-optimal lighting conditions,
we further generated the three-day composite using the 90th percentile value of GCC calcu-
lated over a three-day moving window to reduce the impacts of the variation in weather
conditions, atmospheric interference, and illumination geometry [44]. As regards the Plan-
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etScope imagery of each study site, we also delineated an ROI that took into account the
corresponding PhenoCam location, PhenoCam orientation, and landscape characteristics,
so the ROI in the PlanetScope imagery could approximate the crop canopy characteristics
of that of the corresponding PhenoCam data. As the most widely used vegetation index,
the normalized difference vegetation index (NDVI) was calculated from the PlanetScope
ROI to generate the seasonal time series curves.

For both PhenoCam and PlanetScope, the extracted time series were subsequently
filtered using the spline function to remove the outliers and spurious observations. The
spline filter fitted a smoothing spline curve to the time series and detected the outliers based
on the deviations from the curve. The degree of smoothing in the filter was determined
using Akaike’s Information Criterion [38]. The resultant time series was further smoothed
using the median of a three-point moving window to remove the remaining noise. The
median smoothing was conducted iteratively until the time series became stable. During
the dormant seasons, the time series might be affected by weeds, cover crops, etc., (Figure 3).
The local fluctuations (e.g., orange box in Figure 3) caused by the off-season vegetation
covers might confound the phenological patterns of the target crop species. We thus
delimited the time series into segments, with each one representing a growth cycle, using
the curve turning points (e.g., peaks and pits). The time series segments outside the
growth cycle of the target crop species were replaced by the median dormant season values
(e.g., the black curve in Figure 3). With the imagery pre-preprocessing, we attempted
to remove the outliers and undesired off-season vegetation signals while retaining the
seasonal phenological trajectory of the target crop species.
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Figure 3. The influence of dormant season vegetation on the PhenoCam GCC time series curves.
(a) The dormant season vegetation is before the growing season; (b) The dormant season vegetation
is after the growing season. The GCC time series was pre-processed with off-season fluctuations
replaced by the median dormant season values.

2.2.2. Crop Phenological Modeling

For both PhenoCam and PlanetScope imagery, the pre-processed time series was fitted
using the Beck double logistic model [64]. The double logistic model had been widely
utilized to model the vegetation phenological dynamics, as the parameters of the model
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could be linked with the characteristic phenological process [24]. The model could also
capture the relatively short growing season of crops without overestimating the growing
season duration [19]. Built on the double logistic model, the Beck model was employed in
this study to model the pre-processed seasonal time series as a function of time using six
unique parameters (Equation (2)).

VI(t) = wVI + (mVI − wVI)×
(

1
1 + e(−a1×(t−a2))

+
1

1 + e(b1×(t−b2))
− 1

)
(2)

Here, VI(t) denotes the modeled value of a vegetation index (e.g., GCC or NDVI) at
time t. wVI is the baseline value of the vegetation index during the dormant season and
is determined through the imagery pre-processing (Section 2.2.1). mVI is the maximum
value of the vegetation index throughout the growing season. a2 is the inflection point in
the curve upward (or greening) direction and a1 controls the corresponding rate of curve
increase at a2. Similarly, b2 is the inflection point in the curve downward (or senescing)
direction and b1 denotes the corresponding rate of curve decrease at b2. The parameters in
the Beck model were estimated using the iterative non-linear least squares.

The Beck double logistic model maintained two unique properties to improve the phe-
nological modeling process. First, the Beck model replaced the dormant season vegetation
index values lower than a pre-defined dormant value with that pre-defined one to reduce
the impact of snow, ice, cloud, etc. In this study, the pre-defined dormant value was the
median dormant season value of a vegetation index identified in image pre-processing
(Section 2.2.1). Second, the Beck model incorporated a weighting factor that placed lighter
weights on the values overestimated by the fitted model to diminish the influence of ad-
verse weather conditions (e.g., sub-optimal illumination conditions) negatively biasing the
observed values.

We also tested two other generalized double logistic models (e.g., Elmore and Kloster-
man models) with additional parameters considered for tracking the crop seasonal pheno-
logical dynamics [35,65]. The Elmore double logistic model could account for the declining
trend of vegetation greenness in the summer months, while the Klosterman double logistic
model took into account the varying changing rates near the asymptotes of the logistic
functions as well as the changes of observation values during both dormant and summer
periods. Despite the more generalized functions, these two models had degraded perfor-
mance in our study sites compared to the Beck double logistic model, partly due to the
lack of summer green-down process in certain agricultural sites or the increasingly large
number of parameters to be optimized. Thus, the Beck double logistic model was employed
in this study as the functional representation of phenological time series for retrieving the
crop phenological transition dates.

2.2.3. Crop Phenological Transition Date Analysis

With the Beck fitted time series, the phenological transition dates were then retrieved
using four phenophase analysis methods, namely the time series threshold-based method
(TRS-based method hereafter), the time series derivative-based method (DER-based method
hereafter), the time series curvature-based method (CUR-based method hereafter), and the
time series Gu-based method. For each of the methods, we retrieved relevant phenological
metrics corresponding to the Start of greenness rising Season (i.e., SOS), as well as the
metrics corresponding to the End of greenness falling Season (i.e., EOS). The retrieved
metric-specific SOS would be compared with crop visual emergence observations, and the
metric-specific EOS would be compared with crop visual maturity observations.

The TRS-based method identified critical phenophases by extracting the dates when
the Beck fitted curve reached 50% of the seasonal amplitude of vegetation index. Due to
the difficulty in arbitrarily defining a universal threshold applicable to different vegetation
indices or crops of varying biophysical characteristics [17], we only tested 50% of the
amplitude, a widely used threshold in phenological studies, in both curve upward and
downward directions to represent the TRS-based SOS and EOS in this study. The DER-based
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method retrieved the phenological transition dates corresponding to the local extremes
in the first derivative of the Beck fitted curve. The retrieved dates of maximum and
minimum derivative values correspond to DER-based SOS and EOS, respectively. For the
CUR-based method, it identified the local maxima/minima in the curvature change rate
for the phenophase estimation [24]. During the greenness rising period, the CUR-based
method extracted two phenological metrics, namely Greenup and Maturity, corresponding
to the two local maxima in the change rate of the curvature. During the greenness falling
period, it extracted another two phenological metrics, namely Senescence and Dormancy,
corresponding to the two local minima in the curvature change rate. The Gu-based method
extracted the phenological transition dates by leveraging the recovery, senescence, and
boundary lines (i.e., base and plateau lines). The recovery line was a line tangent to the
curve at the maximum point of the curve’s first derivative. Similarly, the senescence line was
a line tangent to the curve at the minimum point of the first derivative. The base and plateau
lines were the horizontal lines with median dormant season and maximum vegetation index
values, respectively. During the greenness rising period, the Gu-based method extracted
the Upturn Date (UD) and Stabilization Date (SD) phenological metrics by intersecting
the recovery line with the base and plateau lines, respectively. During the greenness
falling period, it retrieved the Downturn Date (DD) and Recession Date (RD) metrics by
intersecting the senescence line with the plateau and the baselines, respectively. More
information about the Gu-based phenological extraction could be found in Gu, et al. [66].

With the four phenophase analysis methods, a diverse range of metric-specific SOS
and EOS characteristics of crop phenological transitioning could be retrieved. Specifically,
the TRS-based SOS, DER-based SOS, CUR-based Greenup and Maturity, and Gu-based UD
and SD metrics would be compared to the emerged stages of crops. The TRS-based EOS,
DER-based EOS, CUR-based Senescence and Dormancy, and Gu-based DD and RD metrics
would be compared to the mature stages of crops.

2.2.4. Accuracy Assessment

To assess the accuracy of PlanetScope and PhenoCam-retrieved crop phenological tran-
sition dates, we conducted visual interpretations of crop emergence and maturity for each
site-year using the digital repeat photography of the PhenoCams. Compared to field-based
phenological observations, the PhenoCam photos could enhance the temporal resolutions
of observations, expand the geographical coverage, and reduce costs. In this study, the
crop phenology of the 57 PhenoCam site-year observations was visually interpreted via
a consistent protocol. Specifically, the crop emergence was interpreted when the crops
were first visible within the defined ROI of the PhenoCam photos. The crop maturity was
interpreted when the crop leaves were approximately 50% yellow within the ROI.

We evaluated the concordance among the PlanetScope, PhenoCam, and visually
observed crop phenology using the statistical measures of root mean square error (RMSE),
bias, and R square. These statistics quantified the magnitude of differences among the
characteristic phenology, the average signed difference, and the degree of the variation in
one type of phenological measurement explained by another, respectively.

3. Results
3.1. Fine-Scale Sensor-Based Crop Phenological Characterization

The fine-scale sensor-derived crop phenological characterizations facilitated direct
comparisons with visually observed phenological events. With the corn site in the Univer-
sity of Illinois Energy Farm in 2017 as an example, the Beck phenological model fitted to
GCC observations was shown in Figure 4. The weighting scheme in Beck diminished the
impacts of negatively biased values. The RMSE of the Beck fitting was about 0.01.
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color starting to turn yellow. The CUR-based Dormancy and Gu-derived RD estimates 
were around DOY 290 and DOY 285, respectively. The corn was ready to be harvested at 
that time. 

The PlanetScope imagery was also analyzed for this specific site-year (Figure 5). 
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Figure 4. The PhenoCam GCC observations fitted by the Beck double logistic model for the corn
site of the University of Illinois Energy Farm in 2017. With the Beck fitted curve, four phenophase
analysis methods (i.e., TRS-based, DER-based, CUR-based, and Gu-based methods) were employed
to extract phenological metrics to be compared with corresponding visual observations. For this
site-year, the visually observed crop emergence date was DOY 148, and the observed crop maturity
date was DOY 267. The PhenoCam photos of the extracted metric and visual observation dates were
also shown in this figure.

At this site, the crop emergence date through the visual observation was about the
day of the year (DOY) 148 in 2017, with the consideration of a series of preceding and
succeeding PhenoCam photos. The TRS- and DER-based SOS measures were about DOY
170 when the corn had developed several leaves on the ground. The CUR-based Greenup
and Maturity estimates were about DOY 150 and DOY 189, respectively. As for the Gu-
based method, the UD and SD phenological transition dates were about DOY 153 and
DOY 184, respectively. Among the PhenoCam-retrieved phenological characteristics, the
CUR-based Greenup and Gu-based UD measures were closer to the visually observed crop
emergence date. The corresponding PhenoCam photos exhibited comparable crop status
and landscape patterns upon comparison to the photo of crop emergence (Figure 4). The
CUR-based Maturity and Gu-based SD estimates, on the other hand, approached the end
of the corn vegetative stage when most of the plant leaves were developed.

The crop maturity date by the visual comparison of a series of PhenoCam photos was
about DOY 267 when about 50% of corn leaves turned yellow. Among the phenological
transition date estimates, the TRS- and DER-based EOS estimates were about DOY 268, of
which the crop growth status was comparable to the visually observed one. The CUR-based
Senescence and Gu-derived DD dates were about DOY 245 and DOY 250, respectively.
During these time periods, the crop was in the reproductive stage with the leave color
starting to turn yellow. The CUR-based Dormancy and Gu-derived RD estimates were
around DOY 290 and DOY 285, respectively. The corn was ready to be harvested at
that time.
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The PlanetScope imagery was also analyzed for this specific site-year (Figure 5). About
80 PlanetScope images over the course of the year were downloaded and pre-processed.
The Beck phenological model was fitted to pre-processed NDVI observations with the
RMSE being 0.016. The phenological characteristics were also estimated to be compared
with visually observed crop emergence and maturity dates. Similar to PhenoCam-derived
measures, the CUR-based Greenup (DOY 154) and Gu-based UD (DOY 158) estimates were
more aligned with the visually observed crop emergence date (DOY 148), upon comparison
with TRS- and DER-based SOS estimates (about DOY 173). The TRS- and DER-based
EOS estimates (about DOY 262) had better agreement with the visually observed crop
maturity date (DOY 267), compared to the CUR-based Dormancy (DOY 291) and Gu-
derived RD (DOY 287) estimates. The consistency between the PhenoCam and PlanetScope
estimates indicated the potential of interpreting the fine-scale sensor-derived phenological
characteristics in the context of visually observed crop phenological events. Given the
characteristic positions of estimated transition dates, the visually observed crop emergence
date would be compared with TRS-based SOS, DER-based SOS, CUR-based Greenup, and
Gu-based UD in subsequent sections. The visually observed crop maturity date would
be compared to TRS-based EOS, DER-based EOS, CUR-based Dormancy, and Gu-based
RD measures.
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Figure 5. The PlanetScope NDVI observations fitted by the Beck double logistic model for the corn
site of the University of Illinois Energy Farm in 2017. With the Beck fitted curve, four phenophase
analysis methods (i.e., TRS-based, DER-based, CUR-based, and Gu-based methods) were employed
to extract phenological metrics to be compared with corresponding visual observations. For this
site-year, the visually observed crop emergence date was DOY 148, and the observed crop maturity
date was DOY 267.

3.2. Concordance between Near-Surface Phenology and Visual Assessment

The 57 PhenoCam site-year photos were visually interpreted via a consistent protocol.
The crop emergence dates ranged from DOY 125 to 180 (corn: DOY 125 to 180; soybean:
DOY 144 to 178). The crop maturity dates ranged from DOY 242 to 304 (corn: DOY 242 to
304; soybean: DOY 243 to 280). Among all the transition metrics, the CUR-based Greenup
and Gu-based UD estimates showed higher degrees of concordance to crop emergence
visual observations across sites and years, compared to TRS- and DER-based SOS metrics
(Figure 6 and Table 2). Upon comparison to all the corn and soybean emergence obser-
vations, the estimated CUR-based Greenup dates were about within one week difference
(RMSE = 6.518 days), with most of the comparison points (red dots in Figure 6) distributed
along the one-to-one line (bias = 1.51 days). About 77% of the spatiotemporal variance
of the emergence observations could be explained by the CUR-based Greenup estimates.
Similarly, the Gu-based UD estimates were linearly correlated with the visually observed
crop emergence dates, with corresponding R square equal to 0.766, bias being 5.999 days,
and RMSE being 8.624 days. The TRS- and DER-based SOS measures, however, were about
three weeks delayed from visual observations (about 20 days for both RMSE and bias).
With these two metrics, most of the comparison points deviated from the one-to-one line,
and the metric dates were much later than the observed ones in PhenoCam photos.

Table 2. The accuracy statistics of comparisons between the PhenoCam GCC-based transition date
estimates and corresponding visual observations for all the corn and soybean sites.

Crop Emergence Crop Maturity

Phenological
Metric RMSE (Days) Bias (Days) R2 Phenological

Metric RMSE (Days) Bias (Days) R2

TRS-SOS 20.17 18.68 0.71 TRS-EOS 5.87 −0.52 0.77
DER-SOS 21.12 19.50 0.69 DER-EOS 6.02 −0.31 0.75

CUR-Greenup 6.52 1.51 0.77 CUR-Dormancy 23.95 22.43 0.66
Gu-UD 8.70 6.00 0.77 Gu-RD 19.03 16.99 0.65
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Figure 6. The comparisons between the PhenoCam GCCbased transition date estimates of the
greenness rising period and the visually observed emergence for (a) both corn and soybean, (b) corn,
and (c) soybean, using the four phenophase analysis methods.

The relationships between PhenoCam and visual assessments were further analyzed
for corn and soybean separately. For corn, the average difference between the CUR-based
Greenup estimates and visual estimates was within one week (RMSE = 5.655 days), and
the corresponding bias was about 1 day. The variation in corn visual emergence across
PhenoCam sites and years could be captured by the Greenup estimates with an R square
value of 0.747. Similar comparison results were also found in the Gu-based UD estimates
(i.e., R square = 0.751, RMSE = 8.166 days, and bias = 5.658 days). The TRS- and DER-based
SOS measures had relatively large differences compared to visual observations (about
18 days for both RMSE and bias). Comparable to corn transition date estimates, the soybean
CUR-based Greenup and Gu-based UD metrics were about one week different from visually
observed emergence dates (RMSE = 8.557 days for Greenup and RMSE = 9.911 days for
UD), and those metrics could explain more than 70% of the variation in observed soybean
emergence over space and time. The TRS- and DER-based SOS estimates, on the other
hand, were more than three weeks away from visual soybean phenological references,
with most of the comparison points deviating from the one-to-one line. Both the collective
and separate analysis of crop species indicated that the visual change in photos caused
by the emergence of crops could be closely linked with CUR- and Gu-based characteristic
phenology from the photo-derived GCC seasonal trajectory.
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We also compared the phenological transition date retrievals in the downward seasonal
trajectory with visually observed crop maturity dates for all the PhenoCam observations.
Among all the retrieval metrics, the TRS- and DER-based EOS measures exhibited better
congruence with crop maturity visual observations across PhenoCam sites, compared to
CUR-based Dormancy and Gu-based RD estimates (Figure 7). The retrieved EOS estimates
of all the corn and soybean sites were aligned with visually observed mature dates, with
RMSE around 5 days, almost no bias, and R square about 0.75. Comparable EOS-based
agreement results were also found in the separate analysis for corn (RMSE around 6 days,
bias around 2 days and R square about 0.8) and soybean (RMSE around 5 days, bias around
3 days and R square about 0.83). Those agreement results indicated that visually assessed
timing of crops entering the maturity stages with 50% of leaves turning yellow could be
approximated by the EOS measures, regardless of crop species considered in this study.
Both the collective and separate analysis of corn and soybean sites further showed that the
CUR-based Dormancy and Gu-based RD measures were more than two weeks delayed in
connecting with crop maturity phenological status. These two measures tended to approach
the harvest stage of crops, such as those shown in the 2017 corn site in the University of
Illinois Energy Farm (Figure 4).
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The collection of agricultural site observations of the PhenoCam network facilitated
the understanding of how to crop phenological metrics retrieved from camera canopy-level
GCC dynamics related to visually observed phenological events from the same camera
photos. The nature and magnitude of covariation between near-surface phenology and
visual assessment across sites and years depended on the characteristics of retrieved
phenological metrics, with crop emergence more approximated by CUR-based Greenup
and Gu-based UD estimates, and crop maturity by TRS- and DER-based EOS estimates
(Table 2).

3.3. Concordance among PlanetScope, Near-Surface and Visual Phenology

For the PhenoCam sites that had PlanetScope observations, we further evaluated the
degree to which the transition date metrics from the PlanetScope NDVI time series aligned
with the visually assessed phenological events from corresponding PhenoCam photos.
With the 31 PlanetScope site-year observations, comparable characteristic patterns as those
in PhenoCam were found among the transition date metrics, though the PlanetScope-based
measures tended to be positively biased with delayed estimations of visually observed
phenological events. As for crop emergence, the CUR-based Greenup and Gu-based UD
estimates showed better alignment with visual assessments compared to TRS- and DER-
based SOS measures (Figure 8). The RMSEs and biases ranged from 1–2 weeks (for Greenup
and UD metrics) to 3–4 weeks (for SOS metrics). In particular, the CUR-based Greenup
achieved the lowest RMSE (8.348 days) with most of the estimates falling within the one-
week interval of emergence observations (bias = 5.276 days) and explained about 65% of
the variation in the observed ones. We further conducted the analysis for the corn and
soybean sites, respectively. For both species, the CUR-based Greenup estimates attained
better agreements with the visual ones (RMSE = 8.624 days and bias = 5.105 days for
corn; RMSE = 7.797 days and bias = 5.6 days for soybean) among all the derived transition
date metrics.

With regard to crop maturity, the TRS- and DER-based EOS estimates from the Plan-
etScope time series had about one week difference upon comparison to visual ones in
terms of both RMSE and bias (Figure 9). The CUR-based Dormancy and Gu-based RD
measures, on the other hand, were positively biased with more than four weeks delayed
(bias = 34.208 days for Dormancy and RMSE = 29.701 days for RD). The EOS estimates,
with an R square of about 0.58, explained more variance in the maturity observations
compared to Dormancy and RD ones (R square of about 0.25). Similar metric patterns were
also observed in the separate analysis of the corn and soybean sites, with the crop maturity
more approximated by the EOS measures. For corn, the DER-based EOS measure achieved
the lowest RMSE (8.327 days) and bias (7.6 days) and explained about 73% of the variance
in the corn maturity observations across sites and years. As regards soybean, the RMSE and
bias of the DER-based EOS were also the lowest (RMSE = 11.908 days and bias = 9 days)
and its R square value was 0.465.

The comparisons conducted for PlanetScope, PhenoCam, and visual phenology
indicated the divergent correspondence between transition date metrics and visually
observed phenological events. For both PhenoCam and PlanetScope, the CUR-based
Greenup exhibited a strong relationship with the photo-based crop emergence observations
(Tables 2 and 3). The DER-based EOS reconciled well with the crop maturity observations.
The comparable correspondence patterns between PhenoCam and PlanetScope suggested
the potential of connecting fine-scale sensor-derived phenological measures with crop
phenological events of biological implications. The CUR-based Greenup and DER-based
EOS measures, with their respective good performance, were utilized for the subsequent
analysis of the coupled ground and sensor-based crop phenological characterizations.
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Figure 8. The comparisons between the PlanetScope NDVI-based transition date estimates of the
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Table 3. The accuracy statistics of comparisons between the PlanetScope NDVI-based transition date
estimates and corresponding visual interpretations using all the PlanetScope site-year observations.

Crop Emergence Crop Maturity

Phenological
Metric RMSE (Days) Bias (Days) R2 Phenological

Metric RMSE (Days) Bias (Days) R2

TRS-SOS 26.70 25.93 0.72 TRS-EOS 10.56 8.96 0.58
DER-SOS 27.96 27.20 0.74 DER-EOS 9.92 8.16 0.58

CUR-Greenup 8.35 5.28 0.64 CUR-Dormancy 36.04 34.21 0.26
Gu-UD 11.79 9.76 0.62 Gu-RD 31.53 29.70 0.22
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To further assess the degree to which the PhenoCam-derived metrics aligned with
the PlanetScope-based ones, we retrieved the CUR-based Greenup and DER-based EOS
measures from both PhenoCam and PlanetScope using all the shared site-year observa-
tions (Figure 10). For the CUR-based Greenup, most of the PhenoCam-PlanetScope pairs
were distributed along the one-to-one line with the corn in red color and the soybean in
green color in Figure 10. About 78.5% of the variance in the PlanetScope-derived Greenup
measures was explained by the PhenoCam-based ones. The average measuring difference
was 7.137 days using RMSE and 4.63 days using bias. With regard to the DER-based EOS,
the PhenoCam-PlanetScope pairs were also aligned along the one-to-one line, with the
corresponding R square being 0.657, bias being 6.56 days, and RMSE being 8.395 days.
For both measures, the high degree of concordance between PlanetScope and PhenoCam
demonstrated the linkage between near-surface and high-resolution satellite-based phenol-
ogy and indicated the coherence of those fine-scale sensors in retrieving crop phenological
characteristics. The RMSEs of about one week between PhenoCam- and PlanetScope-based
measures were possibly attributed to the difference in the sensor field of view, viewing
angles, and sensor configurations, as well as the difference in crop seasonal dynamics
captured by the different vegetation indices.
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Finally, we evaluated the concordance among PlanetScope, PhenoCam, and visual
phenology with all the shared site-year observations using the CUR-based Greenup and
DER-based EOS (Figure 11 and Table 4). Both PhenoCam- and PlanetScope-derived metrics
showed a good relationship with crop visual phenological observations. By comparison
with visual crop emergence, PhenoCam-derived CUR Greenup estimates were within
one week difference (RMSE = 6.43 days), almost no bias, and attained the R square of
0.73. The PlanetScope-based Greenup estimates showed a slightly positive bias (5.28 days),
partly due to the use of PhenoCam imagery for visual phenological assessments. Similarly
strong correspondence with visual crop maturity was found for both PhenoCam- and
PlanetScope-based DER EOS (RMSE = 5.31 days and R square = 0.70 for PhenoCam;
RMSE = 9.92 days and R square = 0.58 for PlanetScope), with PlanetScope estimates slightly
positive biased (bias = 8.16 days). The congruence among PhenoCam, PlanetScope, and
visual crop phenology demonstrated the potential of employing the PhenoCam GCC
time series from the RGB imagery to identify critical crop phenological stages, as well
as leveraging high-resolution satellite time series for crop phenological detection. The
direct comparisons between PlanetScope and visual phenology, along with those between
PhenoCam and visual phenology, indicated the linkage of these fine-scale sensors in terms
of scale and representation for the coupled ground and sensor-based crop phenological
characterizations.

Table 4. The accuracy statistics of comparisons among PlanetScope, PhenoCam, and visual phenology
with all the shared site-year observations using the CUR-based Greenup for crop emergence and
DER-based EOS for crop maturity.

Comparison
Crop Emergence Crop Maturity

RMSE (Days) Bias (Days) R2 RMSE (Days) Bias (Days) R2

PhenoCam vs. Visual 6.43 0.50 0.73 5.31 0.85 0.70
PlanetScope vs. Visual 8.35 5.28 0.64 9.92 8.16 0.58

PlanetScope vs. PhenoCam 7.14 4.63 0.79 8.40 6.56 0.66
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Figure 11. The comparisons among PlanetScope, PhenoCam, and visual phenology with all the shared
site-year observations for crop emergence and maturity stages. The CUR-based Greenup metric was
estimated for crop emergence and the DER-based EOS metric was estimated for crop maturity.

4. Discussion

As two important growth stages, the crop emerged, and mature stages determine the
length of the crop growing season and have noted implications for agricultural biogeo-
chemical cycles and crop primary production. We assessed the near-surface PhenoCam
and high-resolution PlanetScope imagery in characterizing these two stages of corn and
soybean, in comparison with corresponding visual observations. The diverse set of fine-
scale sensor-derived phenological metrics had varying agreements with visually observed
ones, with RMSE ranging from about 5 days to more than 30 days, indicating the impor-
tance of selecting appropriate transition date analysis methods. For both PhenoCam and
PlanetScope derived metrics, the CUR-based Greenup and Gu-based UD estimates showed
good congruence with visual crop emergence observations (e.g., about one-week RMSE
value, small bias, and R square around 0.77 for PhenoCam-Visual emerged comparisons;
about 8–11 days RMSE value, 5–9 days bias, and R square around 0.6 for PlanetScope-Visual
emerged comparisons). The TRS- and DER-based SOS metrics, on the other hand, deviated
from visual crop emergence observations, with RMSE about three weeks for PhenoCam-
Visual comparisons and four weeks for PlanetScope-Visual comparisons. The TRS- and
DER-based EOS estimates reconciled well with visually observed crop maturity dates, with
about 5 days RMSE value, almost no bias, and R square over 0.75 for PhenoCam-Visual
mature comparisons, and about 9 days RMSE and bias values with R square around 0.6
for PlanetScope-Visual mature comparisons. Yet the CUR-based Dormancy and Gu-based
RD estimates showed a large difference from crop maturity observations. The RMSE and
bias of these two estimates were about 3 weeks for PhenoCam-Visual comparisons and
more than four weeks for PlanetScope-Visual comparisons. The agreements resonated
with our previously developed crop phenological monitoring framework, yet from a novel
fine-scale perspective, to shed light on how sensor-derived phenological characteristics
could be directly interpreted in the context of visually observed crop phenological stages of
physiological significance.

Among the transition date analysis methods, the DER-, CUR-, and Gu-based methods
extracted critical crop phenophases based on characteristic points of time series curves (e.g.,
local maxima/minima in the curvature change rate). By contrast, the TRS-based method
identified phenophases via flexibly defined thresholds. In this study, the TRS-based EOS
metrics with the 50% threshold aligned well with the visual crop maturity measures. Yet the
TRS-based SOS metrics, estimated with the 50% threshold, were much delayed compared
to visual crop emergence observations. We further tested a range of threshold values



Remote Sens. 2022, 14, 1957 20 of 25

from 5% to 60% with an increment of 5% and found that TRS-based SOS metrics with
lower threshold values (e.g., 10%) tended to achieve lower RMSE and Bias values, yet
lower R square values for both PhenoCam-Visual emerged comparisons (Figure S1) and
PlanetScope-Visual emerged comparisons (Figure S2). With the crop emergence being
defined as the timing when the crops were first visible in the PhenoCam photos, the
earlier detection dates by lower thresholds of the TRS-based method might be closer to
visual emergence dates. Those detection results, however, were also sensitive to noises and
fluctuations of time-series curves, leading to lower R square values. For different vegetation
indices, crop species, and geographical regions, different thresholds might be needed for
the optimized performance of TRS-based methods [17,67,68], which could pose challenges
for crop phenology detection from a practical viewpoint.

The establishment of the PhenoCam and other phenology camera-relevant networks
has largely facilitated the phenological characterization of individual organisms to land-
scapes via near-surface remote sensing. With the PhenoCams, we conducted systematic and
consistent visual crop phenological interpretations across agricultural sites, as well as re-
trieved canopy-level phenological metrics through the corresponding GCC time series. The
PhenoCam photos, with the sub-daily temporal resolution, enabled the high-quality visual
assessment of crop emergence and maturity stages over space and time. For our study sites,
the crops exhibited wide ranges of emergence dates (DOY 125 to 180) and maturity dates
(DOY 242 to 304) with the visual assessment, due to varying weather, soil, and management
conditions of those sites. This visual assessment overcame the labor-intensive issue of field
phenological observations, broadened the spatial coverage, and enhanced the connections
with pheno-metrics from the GCC-based seasonal trajectory. The pheno-metrics, as shown
in this study, could be characterized by different transition date analysis methods. The
selection of the analysis methods affected the metric retrieval accuracy (e.g., RMSE, bias,
and R square), and thus the correspondence with visually targeted crop phenological
stages. The high degree of concordance between CUR-based Greenup and crop emergence
(RMSE = 6.43 days, bias = 0.5 days, and R square = 0.73), and between DER-based EOS and
crop maturity (RMSE = 5.31 days, bias = 0.85 days, and R square = 0.7), demonstrated the
capability of PhenoCams in the fine-scale crop phenological characterizations for precise
agricultural management. This could be further enhanced with the continually increasing
phenology monitoring network on the global scale. With the unique roles of phenological
interpretations and estimations, PhenoCams drastically facilitated the reconciliation of
visual- and sensor-assessed crop phenology across broad spatial extents and helped tackle
the long-standing challenge of interpreting the sensor-retrieved phenology in the crop
growth and physiology-relevant context.

The PlanetScope image time series opened the door for satellite-based crop phe-
nological detection at both high spatial and temporal resolutions and provided unique
opportunities to be linked with visual and near-surface crop phenology. Our analysis
results indicated that the PlanetScope-derived phenological metrics showed consistent com-
parison patterns as those from the PhenoCams, with PlanetScope-derived CUR Greenup
approaching crop emergence (RMSE = 8.35 days, bias = 5.28 days, and R square = 0.64),
and DER EOS for crop maturity (RMSE = 9.92 days, bias = 8.16 days, and R square = 0.58).
The good performance of these metrics demonstrated the potential of leveraging the Plan-
etScope imagery for satellite-based fine-scale phenological retrieval in direct connection
with observed crop phenological stages. This connection, in terms of scale and repre-
sentation, eased the challenge of satellite-based crop phenological validation, which was
typically conducted using the satellite imagery of moderate- to coarse- spatial resolutions
upon comparison to crop phenological reference at aggregated levels (e.g., district-level
or state-level crop progress reports) [19]. It thus facilitated the identification of critical
phenological transition dates that were characteristic of crop physiological growth stages
using the satellite time series. The PlanetScope time series, with its spatial and temporal
resolutions, provided an effective avenue for the fine-scale agricultural seasonal dynamic
monitoring and management, though its scientific quality might not be as rigorous as that
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of other satellites (e.g., MODIS and Landsat) employed for phenological studies [59,69].
Further inter-sensor radiometric calibrations of the PlanetScope imagery to improve the
radiometric consistency would be desired in future studies [53]. Yet the calibration pro-
cedure usually involved the acquisition of the PlanetScope imagery of a relatively large
spatial extent to be compared with corresponding reference imagery typically of coarser
spatial resolutions (e.g., acquisition of PlanetScope and MODIS imagery of the same spatial
extent), which could be financially prohibitive across the study sites.

The concordance among PlanetScope, PhenoCam, and visual phenology indicated
the role of near-surface and high-resolution remote sensing in bridging ground-based
phenological observations with conventional satellite-based phenological measures, which
were usually derived from the coarse spatial resolution images (e.g., MODIS), and more
recently moderate resolution ones (e.g., Harmonized Landsat and Sentinel-2). The scale
difference in the conventional satellite-based phenological studies made it challenging
to understand how the seasonal trend captured by remote sensing could be reconciled
with crop phenological development trajectory. In recent years, the increasing studies
of near-surface remote sensing showed the capability of the PhenoCams in tracking the
phenological dynamics across the organism-to-ecosystem scales. Besides the PhenoCams,
our study also demonstrated the potential of the PlanetScope imagery in facilitating the
ground-satellite phenological bridging, which could further benefit the understanding
of the effects of scale and representation in phenological retrievals. Yet compared to the
PhenoCams, the PlanetScope phenological estimates showed a slightly positive bias for
both crop emergence (bias = 4.63 days) and maturity (bias = 6.56 days) in this study. The
relatively delayed estimates from the PlanetScope were partially attributed to the difference
between the PhenoCam field of view and the associated satellite pixel, and the difference
in crop phenological trajectories captured by the different vegetation indices. During the
stage of crop emergence, the weak signal of vegetation and associated strong signal of soil
background made the capturing of the subtle change of the emergence more difficult in the
satellite imagery, compared to near-surface remote sensing. The bias for the crop maturity
stage could partially be explained by the heterogeneous status of crop coloration under the
camera and satellite field of view. Additionally, the near-surface remote sensing-derived
GCC index typically registered the greenness of crop canopies, while the satellite-derived
NDVI captured both photosynthetic and structural status. The lag of structural changes in
crop growth relative to the changes in its color and pigments might also cause detection
bias [70].

In this study, both near-surface PhenoCams and high-resolution PlanetScope imagery
showed strong couplings with the observed crop emergence and maturity stages. At fine
spatial scales, the coupling relationships also had great potential to be extended to other
crop-specific phenological stages (e.g., the silking stage of corn), with the Beck phenological
model and appropriately retrieved phenological metrics. Yet as a retroactive approach, the
Beck phenological model may have limited ability to conduct near real-time crop phenology
monitoring. Compared to natural and managed non-agricultural systems, the crop growth
and phenological development in the agricultural systems usually exhibited more diverse
and heterogeneous patterns across farm fields. The characterization of these diverse field-
level phenological patterns, driven by a combination of climate and farming practices (e.g.,
sowing date and fertilizer application), could largely be enabled using near-surface and
high-resolution satellite imagery. The capability of both imagery in characterizing fine-
scale variability in crop phenology had important implications for the efforts toward more
sustainable agricultural management and farm-level decision-making, particularly in small-
holder agricultural systems. As the influence of weather extremes and farming practices on
crop yields varied across phenological stages, such capability facilitated more precise and
targeted stage-specific management practices (e.g., fertilizer and harvest scheduling), as
well as the improved characterization of yield gap or loss under varying weather conditions
at the field to sub-field levels.
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5. Conclusions

In this study, we assessed the near-surface PhenoCam and high-resolution PlanetScope
time series in characterizing two critical crop phenological stages for a range of agricultural
sites across the US. Among the transition date analysis methods, the CUR-based Greenup
and Gu-based UD estimates from both PhenoCam and PlanetScope imagery showed good
congruence with the visually observed crop emergence stage. The TRS- and DER-based EOS
estimates reconciled well with visual crop maturity observations. The concordance among
PlanetScope, PhenoCam, and visual phenology demonstrated the potential to interpret
the fine-scale sensor-derived phenological characteristics in the context of physiologically
well-characterized crop phenological events. This concordance could further facilitate the
use of both fine-scale sensors in calibrating and validating phenological models, under-
standing the relationships between canopy phenology and agroecosystem processes (e.g.,
gross primary production and carbon-nutrient-water cycling), as well as paving the way to
develop formal protocols for bridging ground-satellite phenological characterization. Over-
all, the intercomparison analysis in this study should increase our capability in retrieving
the fine-scale phenological characteristics tied closely to the tangible crop growth stages
on the ground and support an improved understanding of global agricultural production,
particularly in heterogeneous and small-holder agricultural systems.
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