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A B S T R A C T

The phenological dynamics of crops reflect the response and feedback of agricultural systems to climate and
environmental constraints, and have significant controls on carbon and nutrient cycling across the globe. Remote
monitoring of crop phenological dynamics in a consistent and systematic manner is vitally crucial for optimizing
the farm management activities and evaluating the agricultural resilience to extreme weather conditions and
future climate change. Yet our ability to retrieve crop growing stages with satellite time series is limited. The
remotely sensed phenological transition dates may not be characteristic of crop physiological growing stages.
The objective of this study is to develop a remote sensing phenological monitoring framework that can reconcile
satellite-based phenological measures with ground-based crop growing observations, with corn and soybean in
Illinois as a case study. The framework comprises three key components: time series phenological pre-processing,
time series phenological modeling, and time series phenological characterization. As an exploratory prototype,
the framework retrieved a total of 56 phenological transition dates that were subsequently evaluated with the
district-level ground phenological observations. The results indicated that the devised framework can adequately
retrieve a wide range of physiological growing stages for corn and soybean in Illinois, with R square greater than
0.6 and RMSE less than 1 week for most stages. The devised framework largely extends the limited satellite
phenological measures to a range of phenological transition dates that are characteristic of essential crop
growing stages. It paves the way for formulating standard crop phenological monitoring protocols via remote
sensing. The wealth of retrieved phenological characteristics open up unique opportunities to enhance our
understanding of the complex mechanisms underlying the crop growth in response to varying environmental
stresses, and to make more adaptive farm management strategies towards sustained agricultural development.

1. Introduction

The phenological dynamics of vegetated ecosystems reflect the re-
sponse and feedback of the terrestrial biosphere to climate and en-
vironmental constraints, and have significant controls on matter and
energy exchange across the globe (Cleland et al., 2007; Jeong et al.,
2011; Morisette et al., 2009; Thackeray et al., 2016). Accurate mea-
surements of intra- and inter-annual changes in vegetation activities
exert a marked role in understanding carbon, water, and energy fluxes,
evaluating vegetative responses to climate change and variability, and
predicting ecosystem changes at local, regional, and global scales
(Asner et al., 2000; Diao, 2019a; Diao and Wang, 2016; Kramer et al.,
2000; Xie et al., 2018). As a sensitive and integrated indicator of crop
growth to environmental conditions, crop phenology has important
implications for farm management practices and crop yield predictions
(Diao, 2019b; Gao et al., 2017; Sakamoto et al., 2013).

The biophysical structures of crops and their physiological

responses (e.g., light use efficiency, photosynthesis, and evapo-
transpiration) to extreme weather conditions vary across crop growing
stages (Brown et al., 2012; Sakamoto et al., 2011). For example, the
silking growing stage of corn and the setting pods growing stage of
soybean are particularly sensitive to water stress for yield loss, and are
regarded as the critical timing for scheduling the irrigation activities
(Hickman and Shroyer, 1994; Kilgore and Fjell, 1997). Each day of
drought stress may decrease the yield of corn by 3-8% during its silking
stage, and reduce the number of pods up to 20% during the setting pods
stage of soybean (Lauer, 2012). As a critical link between environ-
mental conditions and yield estimations, crop phenology is an vital
constituent in crop models to estimate crop growth conditions, under-
stand seasonal carbon and nutrient cycling, and evaluate crop net pri-
mary production (Bolton and Friedl, 2013; Jin et al., 2017; Lokupitiya
et al., 2009; Zhang and Zhang, 2016). Hence, remote detection of crop
phenological dynamics in a consistent and systematic manner is vitally
crucial for optimizing the farm management activities and evaluating
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the agricultural resilience to extreme weather conditions and climate
change.

Documenting the phenological progress of crops throughout the
growing season over wide geographical regions is an important but
challenging task. To date, the most comprehensive ground-based crop
phenological progress information at district to state levels is provided
by National Agricultural Statistics Service (NASS), United States
Department of Agriculture (USDA). Approximately 4000 ground ob-
servers throughout the US record the field growing stages of various
crops according to NASS phenological observation protocols. Those
field observations are compiled to multi-county agricultural statistics
district (ASD) or state levels to be published in Crop Progress Reports
(CPRs). The CPRs summarize the percentage of specific crops going into
certain phenological growing stages (e.g., silking stage of corn) on a
weekly basis throughout the growing season. Despite the popularity of
CPRs in guiding farm practices and management activities, the ground-
based phenological surveys are expensive, time-consuming, and subject
to observers’ personal assessment. The intensive field reconnaissance
makes the ground-based phenological measures impractical for crop
phenological monitoring over large geographical regions through time.
Besides, the phenological aggregates for a number of counties (or the
entire state) roughly summarized in CPRs are insufficient to uncover
detailed spatio-temporal phenological patterns at local scales, which
makes it challenging to assess crop phenological development under
various farming practices (e.g., new cultivars and irrigation strategies)
and environmental conditions. Thus a more comprehensive crop phe-
nological monitoring framework that can accommodate the spatio-
temporal phenological variations is to be developed.

The recent advances in remotely sensed time series analysis provide
unique opportunities to monitor crop phenological progress over space
and time. With the satellite time series, a multitude of image compo-
siting and filtering algorithms (e.g., Maximum Value Composite, Best
Index Slope Extraction, and Mean Value Iteration) have been devised to
reduce the influence of viewing geometry, atmospheric interference
and cloud contamination (Julitta et al., 2014; Ma and Veroustraete,
2006; Viovy et al., 1992). Those filtering algorithms reduce the outlying
effects mostly through conducting statistical evaluations (e.g., residuals
outside a certain statistical range), or assessing the influence of relevant
remotely sensed physical processes (e.g., the influence of path ra-
diance). To track the temporal phenological trajectory of crops
throughout the growing season, several curve-fitting based phenolo-
gical models have been devised in recent years, such as Fourier analysis,
double logistic function, asymmetric Gaussian function, and smoothing
spline function (Hermance et al., 2007; Jönsson and Eklundh, 2004;
Zhang et al., 2003; Zhou et al., 2015). Those curve-fitting based models
typically fit smoothing curves with given mathematical formulas to the
time series of vegetation index (e.g., normalized difference vegetation
index [NDVI]). They can further smooth out noise and fluctuations in
the satellite time series, as well as uncover the temporal phenological
patterns of crops over the course of a year.

With the smoothed satellite time series, the critical phenological
transition dates of crop growing stages can be retrieved using pheno-
phase retrieval algorithms (e.g., inflection point algorithms and
threshold-defined algorithms) (Boschetti et al., 2009; Moulin et al.,
1997; Reed et al., 1994; Wardlow et al., 2006; White et al., 1997).
Those algorithms mostly capture the characteristic phenology of crops
(e.g., onset or end of growing season) by defining certain thresholds of
vegetation index, or detecting the inflection (or transition) points of
satellite time series (e.g., derivative of the curve). However, those re-
motely sensed phenological characteristics have not been adequately
adopted in agronomy or crop science studies due to three challenges.
First, the remotely detected phenological characteristics (e.g., onset of
growing season) are not obviously linked to crop physiological devel-
opment stages (e.g., emergence or silking growing stages of corn). It is
noted that there are timing gaps between the satellite retrieved green-
up dates and the ground-measured emergence stage of corn (or

soybean), and between the satellite detected dormancy dates and the
ground-based harvest stage of corn (or soybean) (Gao et al., 2017).
Sakamoto et al. (2010) developed a two-step filtering approach to link
the satellite- and ground-based phenological measures, through de-
fining a shape model with critical phenological transition dates. Yet the
definition and calibration of the shape model require ancillary ground-
based crop phenological growth data, which may not be available over
extended geographical regions. Second, most of remotely sensed crop
phenological studies are constrained to limited crop physiological
growing stages, particularly the emergence and harvest stages of crops,
as those stages are more connected to the onset and end of growing
season estimated by remote sensing. With the continuing advances in
remote sensing, a more systematic framework that can extend the
limited satellite phenological measures to a broader range of crop
growing stages is to be explored. Third, the remotely sensed phenolo-
gical characteristics have not been appropriately validated with field-
based crop phenological observations. The disparity between spatial
coverage of satellite pixels and site-specific field observations, along
with the intensive fieldwork in collecting year-long crop phenological
observations, makes the remotely sensed phenological validation diffi-
cult. Though remotely sensed time series has been demonstrated to be
capable of characterizing the seasonal pattern of crop phenological
development, few studies have quantitatively evaluated the accuracy of
the retrieved phenological characteristics.

The objective of this study is to prototype a remote sensing phe-
nological monitoring framework that reconciles satellite time series
phenological measures with ground-based observations to monitor the
crop phenological development. With corn and soybean in Illinois as a
case study, we specifically seek to: 1) devise a remotely sensed crop
phenological monitoring framework to retrieve a wide range of crop
growing stages using satellite time series, 2) evaluate a combination of
curve-fitting based phenological models and phenophase estimation
methods in capturing the crop phenological characteristics, and 3) in-
vestigate the relationships between a wide range of remotely sensed
phenological characteristics and CPR-based ground crop development
stages.

2. Study area and data

2.1. Study area

The study area is Illinois in the Midwest region of United States.
Illinois is located in the interior plains with flat terrain and a mean
elevation of 180m above sea level. It has a humid continental climate
with large temperature differences across seasons. The average tem-
perature in summer is about 23 °C, and the average temperature in
winter is around 0 °C. The precipitation is relatively well distributed
over the seasons, with its annual average ranging from around 1200mm
in the southern portion of Illinois to about 890mm in the north. As a
primary agricultural state, Illinois is listed among the top in agricultural
productivity and is a major source of agricultural commodities exported
from the US. Two major agricultural crops in Illinois are corn and
soybean, which are usually rotated in successive years and cultivated in
rainfed conditions. The sowing time of corn or soybean varies across
years and locations, which largely relies on temperature conditions, soil
moisture, and farm management decisions. As a result, the phenological
timing of corn or soybean reaching a specific growing stage also varies
over space and time throughout Illinois. Based on farming practices and
climate conditions, Illinois is partitioned into nine ASDs (Fig. 1). Each
ASD is composed of multiple geographically contiguous counties that
share similar agricultural characteristics.

2.2. Remote sensing data

Aboard the Terra and Aqua satellites, Moderate Resolution Imaging
Spectroradiometer (MODIS) can view the entire surface of Earth every 1
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to 2 days at spatial resolutions of 250 or 500m. The combination of
spatial and temporal resolutions of MODIS represents an appropriate
tradeoff to track seasonal dynamic changes of agricultural crops over
wide geographical regions. The MODIS MCD43A4 (version 6) nadir
Bidirectional Reflectance Distribution Function (BRDF) adjusted re-
flectance data are collected in this study to build the satellite time series
(Schaaf and Wang, 2015b; Schaaf et al., 2002). The MCD43A4 ac-
commodates the viewing angle effects through the BRDF algorithm to
retrieve the nadir surface reflectance for MODIS bands 1-7 (i.e., blue,
green, red, two near-infrared, and two shortwave-infrared bands). It is a
daily 16-day composite dataset and has a 500m spatial resolution. The
composite dataset selects the optimal reflectance value for each ob-
servation date during its 16-day retrieval period from both Terra and
Aqua. The MCD43A4 data are spatially and temporally consistent and
comparable, and robust to atmospheric and sensor noise. In this study,
the MCD43A4 data covering Illinois over the period 2002-2017 were
downloaded from Land Processes Distributed Active Archive Center. As
the most widely used vegetation index, NDVI was calculated from the
red and near-infrared bands of the MCD43A4 data to build the corre-
sponding satellite time series for phenological analysis.

The MCD43A4 data were pre-processed with ancillary MODIS data
(e.g., snow and temperature) to further filter out snow-contaminated
and outlying satellite observations. The snow quality assurance layer of
the MODIS MCD43A2 (version 6) data was employed to remove the
snow-contaminated observations in the data (Schaaf and Wang, 2015a).
Additionally, the daily daytime temperature layer of the MODIS
MOD11A1 (version 6) land surface temperature data was utilized to
flag the winter season in which snow or ice may appear (Wan et al.,
2015; Wan et al., 2002). The MCD43A4 data with the daytime surface
skin temperature less than 5 °C were labelled as invalid observations
(Zhang and Goldberg, 2011). Those flagged spurious or invalid ob-
servations of the MCD43A4 data were then substituted by the

arithmetic average of valid reflectance values of the close neighbors in
the time series. In Illinois, the harvest timings for corn and soybean are
usually before winter. The pre-processing of the MCD43A4 is to gen-
erate more stable and consistent off-season phenological observations
for subsequent analysis.

As two major agricultural crops, corn and soybean are planted in
most of the farming area, occupying more than 50% of the land in
Illinois. The Cropland Data Layers (CDLs) were used in this study to
select relatively pure corn or soybean pixels of the MCD43A4 from 2002
to 2017. The CDLs are produced annually by USDA to map the spatial
extents of main crop types in the US at a spatial resolution of 30m (or
56m), and have been used as the cropland reference data in many
agricultural studies (Boryan et al., 2011; Johnson and Mueller, 2010).
For most of the mapping years in Illinois, the producer’s and user’s
accuracies of corn and soybean classes in CDLs are higher than 90%
(NASS CDL, 2018). The CDLs were geographically resized to the MODIS
spatial resolution, and the resized pixels with the percentages of corn
(or soybean) higher than 90% were retained to build the satellite time
series. It is noted that some selected pixels may have lower percentages
of corn (or soybean), due to the varying pixel footprint sizes at different
view angles of MODIS. As the MCD43A4 product optimizes the daily
nadir BRDF-adjusted surface reflectance during its 16-day periods by
taking into account observation coverage, image quality, and temporal
distance, the pixel purity for the majority of the selected pixels should
still be relatively high. The yearly average numbers of relatively pure
pixels for corn and soybean per ASD are about 3960 and 1835, re-
spectively.

2.3. Ground-based crop progress reports

To date, the most comprehensive ground-based crop phenological
progress and condition data are CPRs, provided by USDA (NASS CPR,
2018). The CPRs present the proportion of main crops reaching certain
phenological growing stages at ASD- or state- levels. The description of
the surveyed phenological stages for corn and soybean in CPRs is shown
in Table 1. For most of the states, the CPRs are only available at the
state scale, and those state-level CPRs have served as the main reference
data for validating the remotely sensed phenological estimates in pre-
vious studies. Yet the spatio-temporal phenological variations across
agricultural districts can hardly be accommodated or evaluated. The
sampling size of state-level CPRs may not be sufficient to adequately
assess the estimation accuracy. In Illinois, the CPRs for corn and soy-
bean are released at both ASD- and state- levels from 2002 to 2017
through the surveys collected from about 127 reporters. For each
agricultural district, the area percentage of corn (or soybean) achieving
certain growing stages in Table 1 is reported at a weekly interval. For
both corn and soybean, this weekly time series of phenological ob-
servations was cleaned to ensure the cumulative percentage being
monotonically increasing. It was further linearly interpolated to the
daily basis to serve as the reference data for validating the remotely
sensed phenological estimates. As a tradeoff between the state-level and
the site-specific field phenological observations, the ASD-level pheno-
logical reference data provide an adequate summary of crop phenolo-
gical progress over wide geographical regions, as well as accommodate
the large-scale spatio-temporal phenological variations within the state.

3. Methods

In this study, we aim to prototype a remote sensing phenological
monitoring framework that can reconcile satellite time series pheno-
logical measures with ground-based observations to monitor the crop
phenological development. The phenological monitoring framework is
mainly composed of three components: time series phenological pre-
processing (Section 3.1), time series phenological modeling (Section
3.2), and time series phenological characterization (Section 3.3)
(Fig. 2). This phenological framework includes a systematic set of

Fig. 1. The agricultural statistics districts of Illinois, US.
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methodologies that are designed particularly for agricultural phenolo-
gical monitoring, including seasonality filtering to diminish the influ-
ence of weeds and cover crops, double logistic-based phenological
models to capture rapid changes in crop growth and development, and

diverse phenological characterization methods to retrieve a wide range
of crop growing stages. As an exploratory prototype, the framework is
designed to encompass the most critical components in crop phenolo-
gical monitoring, rather than evaluating all the methods in remotely
sensed crop phenological studies.

3.1. Time series phenological pre-processing

Due to varying illumination conditions, atmospheric interference,
and instrumental noise, the satellite NDVI time series may contain
implausible or spurious observations that confound the underlying
phenological patterns of crops. As the first component in the phenolo-
gical monitoring framework, time series phenological pre-processing is
to minimize the perturbations of atmospheric and sensor noises, and to
smooth the satellite NDVI time series. Specifically, three filtering al-
gorithms, namely blue, spline, and median filters, are devised sequen-
tially in this study to remove the noises in the MCD43A4 NDVI time
series of crops.

The blue filtering algorithm is employed to remove the satellite
observations that may be contaminated by adverse weather conditions
(e.g., snow or cloud) in the MCD43A4 NDVI time series, using the blue
chromatic coordinate (BCC) index. The daily BCC index is computed as
the reflectance of the blue band divided by the sum of the reflectance of
the blue, green, and red bands. The BCC index has been found to be
sensitive to changing cloud and snow cover conditions, as the values in
the blue band show larger variability during those unstable weather
conditions (Julitta et al., 2014). With the daily values, the weekly
average and standard deviation of the BCC values can be calculated.
Upon testing a multitude of quantiles with reference to previous stu-
dies, the study finds that the 5% quantile of the seasonal standard de-
viation can effectively remove spurious observations while preserving
valid ones (Julitta et al., 2014). This quantile is employed to generate a
seasonal range of the weekly average BCC values. The satellite ob-
servations outside this seasonal range are marked as spurious ob-
servations and eliminated from the time series.

After reducing the influence of adverse weather conditions, the
spline filtering algorithm is designed to detect and remove outlying
satellite observations through statistical evaluations (Migliavacca et al.,
2011). The spline filtering algorithm fits a smoothing spline curve to the
time series of NDVI and calculates the residuals between the fitted and
observed values. A seasonal residual envelope is generated to remove
the spurious observations with absolute residual values greater than μ
+ 3σ, where μ and σ are the mean and standard deviation of the re-
siduals, respectively (Migliavacca et al., 2011). The spline filtering al-
gorithm conducts this spline smoothing and residual-based outlier re-
moval recursively until no further outliers are detected.

Finally, the median filtering algorithm is utilized to further smooth
the NDVI time series by removing the observations that deviate

Table 1
Description of phenological development stages for corn and soybean by NASS, USDA.a

Corn Soybean

Phenological stage Description Phenological stage Description

Emerged As soon as the plants are visible Emerged As soon as the plants are visible
Silking The emergence of silk like strands from the end of ears Blooming A plant should be considered as blooming as soon as one bloom

appears.
Dough Normally half of the kernels are showing dent with some thick

or dough-like substance in all kernels.
Setting pods Pods are developing on the lower nodes with some blooming still

occurring on the upper nodes.
Dent Occurs when all kernels are fully dented and the ear is firm

and solid. There is no milk present in most kernels.
Turning yellow Leaves of soybean start to turn yellow

Mature Plant is considered safe from frost. Corn is about ready to
harvest with shucks opening and there is no green foliage
present.

Dropping leaves Leaves near the bottom of the plant are yellow and dropping, while
leaves at the very top may still be green. Leaves are 30-50 percent
yellow.

Harvest Plant is cut, threshed, or otherwise gathered from the field. Harvest Plant is cut, threshed, or otherwise gathered from the field.

a Adapted from crop progress terms and definitions of NASS, USDA (https://www.nass.usda.gov/Publications/National_Crop_Progress/terms_definitions.php).

Fig. 2. The remote sensing phenological monitoring framework to characterize
crop growing stages.
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considerably from the local trend in the time series (Ganguly et al.,
2010). It replaces the NDVI value on each observation date with the
median value during its three-day temporal moving window iteratively
until there is no change in the time series. With three sequential fil-
tering algorithms, the spurious NDVI observations of the MCD43A4
time series can be further eliminated. Those observations are replaced
by the moving average of closest good quality neighbors.

Besides atmospheric and sensor noises, the remotely sensed phe-
nological patterns of target crops (i.e., corn or soybean) may also be
confounded by those of off-season vegetation covers (e.g., weeds and
cover crops). The off-season in the study denotes the periods before
target crops being planted and after target crops being harvested over
the course of a year. Though CDLs are used to select relatively pure corn
or soybean pixels with a unimodal growing season throughout the year,
the weed cover growing before crop planting has been found to affect
the remote identification of the green-up onset of crops (Wardlow et al.,
2006). To reduce the influence of off-season vegetation covers on the
satellite time series, time series phenological pre-processing en-
compasses a further step for seasonality filtering of the target crops. In
this study, the smoothing spline algorithm is employed to smooth out
the phenological signals during the off-season by fitting a spline
smoothing curve to the satellite observations. The turning points (e.g.,
peaks and pits) of the smoothed curve segment the satellite time series
into different temporal regions. Compared to off-season vegetation
covers, the target crops usually achieve higher amplitudes of NDVI with
more distinct seasonal dynamics. Thus the range of the growing season
of the target crops is estimated as the temporal period delimited by the
two constrained surrounding pits of the maximum peak NDVI value of
the smoothed curve. The delimiting pits are constrained to the ones
with values comparable to off-season NDVI values of the target crops.
The local peaks caused by weeds and cover crops were removed and
interpolated accordingly through spline functions. As a result, the NDVI
values within the estimated range of the growing season are retained or
interpolated to minimize the influence of weeds, and the ones outside
this range are replaced by the average of the off-season values of the
target crops. Under the devised framework, time series phenological
pre-processing attempts to improve the spatial and temporal con-
sistency of the MCD43A4 observations for subsequent phenological
modeling.

3.2. Time series phenological modeling

After time series phenological pre-processing, time series phenolo-
gical modeling is designed to model the seasonal phenological devel-
opment trajectory of crops and uncover their temporal phenological
patterns throughout the year. Of the curve-fitting based phenological
models, double logistic function has been widely utilized in phenolo-
gical monitoring, owing to the phenological implications of its esti-
mated parameters and its superior performance to other smoothing
algorithms (Zhang et al., 2003). Double logistic function has also been
found to model the relatively short growing season better than other
algorithms (e.g., asymmetric Gaussian function and Fourier analysis),
without overestimating the duration of the growing season (Beck et al.,
2006). As agricultural crops usually maintain short growing seasons
with rapid changes in vigor from emergence to harvest stages, three
types of double logistic-based phenological models, namely Beck,
Klosterman, and GU, are devised under the monitoring framework.
Those double logistic-based phenological models vary in the number of
parameters to be optimized, and thus the flexibility to fit the satellite
observations. Additionally, the smoothing spline function is introduced
as an alternative in the framework, as it may be more suitable to fit the
noisy satellite time series or model the weak phenological patterns (e.g.,
low seasonal amplitude of NDVI).

The double logistic function assumes that the phenological devel-
opment of vegetation throughout the year can be represented using two
piecewise logistic functions of time (i.e., one function for the upward

direction of NDVI, and the other for the downward direction of NDVI)
(Zhang et al., 2003). Built upon double logistic function, Beck models
the temporal variations in yearly satellite-derived NDVI with six unique
parameters that can be interpreted in light of vegetation phenology (Eq.
(1)) (Beck et al., 2006).
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Here, t is the day of year (DOY) and f(t) is the fitted NDVI value at
time t using Beck. abase is the off-season NDVI and amax is the maximum
NDVI over the course of a year. m2 and n2 are the inflection points for
the upward and downward directions of NDVI, respectively. m1 is the
rate of increase of the curve at inflection point m2, and n1 is the rate of
decrease of the curve at inflection point n2. The off-season NDVI abase is
derived according to time series phenological pre-processing in Section
3.1. The other five parameters are estimated via iterative non-linear
least squares. Compared to conventional double logistic function, Beck
can diminish the impact of spurious observations (particularly caused
by snow and ice) on the model fitting process, by replacing all values
lower than the off-season NDVI with the off-season NDVI. Beck also has
an optional weighting scheme that assigns lower weights to observa-
tions overestimated by the fitted curve to track the upper envelop of the
observed data. Given the potential positive NDVI bias in the MODIS
surface reflectance data, the weighting scheme is not employed in the
Beck model. Beck has been demonstrated to be able to model the short
growing season of vegetation and to capture abrupt changes of NDVI at
the beginning and end of the growing season. Hence it is designed as a
candidate model for understanding agricultural phenological dynamics
in this study.

Klosterman (Eq. (2)) and GU (Eq. (3)) model the seasonal dynamics
of vegetation vigor via more generalized double logistic functions (Gu
et al., 2009; Klosterman et al., 2014). These two models incorporate
additional parameters to account for diverse and varying vegetation
phenological processes over the course of a year, and are more flexible
and robust in fitting the seasonal satellite observations. Compared to
conventional double logistic function, these models are more capable of
tracking diverse phenological trajectories, as they can accommodate
different changing rates near the lower and upper asymptotes of the
logistic functions, changes of satellite observations during the off-
season, non-linear phenological processes during the summer time, etc.
Hence, they may provide more accurate model representations of
temporal dynamics of crops along the phenological trajectory.
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Here, t is DOY and f(t) is the fitted NDVI value at time t using
Klosterman (Eq. (2)) or GU (Eq. (3)). A more comprehensive set of
parameters are taken into account in these two models to represent the
phenological processes. The empirical parameters in Klosterman are a1,
b1, a2, b2, c, m1, m2, m3, m4, n1, n2, n3 and n4. The empirical parameters
in GU are a0, a1, a2, m1, m2, m4, n1, n2 and n4. Klosterman and GU are
both generalized double logistic models, yet they vary in the number of
parameters to be estimated and thus the flexibility in fitting the satellite
observations. In this study, those parameters are optimized to fit the
yearly NDVI time series of crops using the phenopix library in R (Filippa
et al., 2016).

The smoothing spline function can also model the crop seasonal
phenological trajectory, besides being utilized to remove outliers and
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diminish the influence of off-season vegetation covers (Section 3.1). It
models the seasonal variation of NDVI through fitting piecewise poly-
nomials to temporal segments of data, and joining the polynomials to a
continuous curve at the connecting locations of those segments (i.e.,
knots) (Dierckx, 1995; Hermance et al., 2007). The continuity condi-
tions at the knots typically require the continuity of both the spline
curve and its derivatives. The order of polynomial pieces, the number of
knots, and the quality of observations regulate the sensitivity of the
smoothing spline in modeling the remotely sensed phenological time
series. In smoothing splines, the smoothing parameter is utilized to
balance the goodness of fit to the data and the level of smoothness of
the curve. A lower smoothing parameter indicates higher fidelity to the
data and also the chance of overfitting, while a higher smoothing value
implies a larger penalty for the roughness of the curve and may lead to
underfitting. Hence an appropriate smoothing parameter that adapts to
intra-annual phenological fluctuations is important to capture the crop
seasonal patterns, suppress spurious oscillation, and avoid overfitting.
In this study, the optimal smoothing parameter is estimated by gen-
eralized cross validation to fit the observed data to defined level of
precision.

The spline model is a data-driven functional representation of ve-
getation phenological process without the constraints of shape being
imposed by other phenological models (e.g., double logistic function).
With its more flexible data-driven phenological shape, the spline model
may be a desired alternative to capture the weak or complicated crop
phenological patterns in the framework. Given the relatively homo-
genous agricultural fields monitored in this study, the cubic smoothing
spline with third-order piecewise polynomials is selected for char-
acterizing the crop phenology. Other spline models, such as regression
splines and high-order splines may also be good candidates for phe-
nological estimations, especially in diversified and intensified agri-
cultural systems (Bradley et al., 2007; Hermance et al., 2007).

3.3. Time series phenological characterization

With the smoothed time series curves generated by phenological
models, time series phenological characterization is to estimate the
critical phenological transition dates that are characteristic of crop
physiological growing stages (e.g., emerged and silking stages for corn).
In this study, four representative types of phenological characterization
methods, namely threshold-based, derivative-based, curvature-based,
and Gu-based methods, are devised to retrieve crop phenological
transition dates in the framework. With different phenological char-
acterization strategies, those methods may shed light on both shared
and distinct crop growing characteristics.

The threshold-based method extracts the critical phenophases of
crop development through arbitrary user-defined thresholds (White
et al., 2009). The thresholds for phenological characterization can be
defined using absolute values (e.g., NDVI being 0.1), or relative values
(e.g., NDVI being 10% of its amplitude) (White et al., 1997). Due to the
difference in vegetation biochemical and biophysical structures, the
absolute thresholds defined for phenophase extractions in one geo-
graphical region might not be suitable over extended regions. The re-
lative thresholds, on the other hand, may be more desired to capture the
important phenophases by identifying the DOYs when defined percents
of the amplitude of NDVI are reached. A range of relative thresholds
have been examined in phenological studies with mixed results re-
ported (Gao et al., 2017; Shen et al., 2014; White et al., 1997; Yu et al.,
2010). Despite the simple configuration of the threshold-based method,
the trials and efforts in defining arbitrary thresholds make this type of
method cumbersome to implement in the monitoring of crop growing
progress at large scales. In this study, three phenological transition
dates, namely start of season (SOS), peak of season (POS), and end of
season (EOS), are estimated as the exploratory prototype in the devised
framework. The threshold-based SOS and EOS are defined when 50
percents of the amplitude of NDVI are reached during the upward

direction and downward direction of the smoothed curve, respectively.
The POS is defined when the maximum NDVI of the smoothed curve is
achieved. Other thresholds, despite the potentials in phenological
characterization, are not studied in the exploratory framework.

The derivative-based method characterizes the crop development
according to local extremes in the first derivative of the smoothed time
series curve. The rapid changes of NDVI values reflected in the deri-
vative of the curve, associated with drastic changes in vegetation vigor
and photosynthetic activities, may be indicative of vegetation pheno-
logical transitioning from one stage to another. Those inflection points
represented by the derivative of the curve are hence employed for
phenological characterization. Similar to the threshold-based method,
three phenological transition dates, namely start of season (SOS), peak
of season (POS), and end of season (EOS), are estimated using the de-
rivative-based method in the devised framework. The derivative-based
SOS and EOS are defined when the first derivative of the smoothed
curve achieves the absolute maximum and minimum, respectively. The
POS is defined when its first derivative reaches zero between SOS and
EOS.

The curvature-based method retrieves the crop phenophases based
on the local extremes in the rate of change in the curvature of the fitted
phenological model (Klosterman et al., 2014; Zhang et al., 2003). This
type of method attempts to estimate the phenological transition dates
by capturing the inflection points when the curvature of the fitted NDVI
time series changes the most rapidly. In the framework, four transition
dates (i.e. greenup, maturity, senescence, and dormancy) are retrieved
with the curvature-based method. The greenup and maturity dates
correspond to the times when the rate of change in the curvature
reaches two local maxima during the upward direction. Those dates
indicate the seasonal growth of vegetation transitions from one ap-
proximately linear stage to another. Similarly, the senescence and
dormancy dates are defined when the rate of curvature change of NDVI
time series achieves two local minima in the downward direction.

The Gu-based method captures the crop phenological progress using
a combination of boundary lines (e.g., plateau and baseline) and local
extremes in the first derivative of the smoothed curve (Gu et al., 2009).
The method models the seasonal dynamic trajectory of vegetation as
approximately linear processes using recovery and senescence lines.
The recovery line is defined as the line that goes through the maximum
point of the first derivative of the curve with a slope of peak recovery
rate. The peak recovery rate is the maximum value of the first deriva-
tive of the curve, which represents the maximum slope in the upward
direction of the curve. Correspondingly, the senescence line is defined
as the line that passes through the minimum point of the first derivative
with a slope of peak senescence rate, and the peak senescence rate is the
minimum of the first derivative of the curve. Four phenological tran-
sition dates (i.e., upturn, stabilization, downturn, and recession) can be
estimated using the Gu-based method accordingly. The upturn and
stabilization dates correspond to the times when the recovery line in-
tersects the baseline and the plateau line, respectively. The baseline and
the plateau line are further defined as the horizontal lines corre-
sponding to the minimum (i.e., off-season NDVI) and the maximum
(i.e., amplitude) of the curve. Similarly, the recession and downturn
dates are estimated when the senescence line intersects the baseline and
the plateau line, respectively. Those phenological transition dates re-
present the critical inflection points to mark the transitioning of phe-
nophases when linear growing and senescent processes are assumed to
approximate the overall shape of the seasonal cycle of vegetation dy-
namics.

Those four types of phenological characterization methods retrieve
the phenophases according to different curve properties or empirical
thresholds. As a result, the phenological transition dates retrieved by
different characterization methods may have marked varying ecological
meanings. In the devised framework, the diverse phenological char-
acterization methods allow the flexibility of selecting the ones better
suited to the phenological trajectory of crops in different agricultural
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systems.

3.4. Accuracy assessment

With the combination of time series phenological modeling and
time series phenological characterization, a suite of phenological
transition dates can be estimated in the devised framework. For all the
mapping years, those phenological transition dates were retrieved for
all the extracted corn and soybean pixels. The retrieved transition dates
were summarized to the ASD level and the cumulative percentages of
those transition dates for both corn and soybean throughout the
growing season were derived. To assess the alignment between re-
motely sensed characteristic phenology and ground-based phenological
observations, the cumulative percentages of the retrieved transition
dates were compared to the percentages of crops reaching corre-
sponding field physiological growing stages. For example, the cumu-
lative percentage of transition dates of POS retrieved by the threshold
method was compared to the percentage of corn going into silking,
dough, and dent growing stages, respectively. With regard to soybean,
the cumulative percentage of transition dates of threshold-derived POS
was compared to its percentage entering blooming, setting pods, and
turning yellow growing stages, respectively. A complete list of com-
parisons was in Table 2, with reference to definitions of phenological
characteristics of transition dates. Due to the weekly phenological ob-
servation interval and the missing data issues in CPRs, we further
evaluated the alignment for each comparison by focusing on comparing
the median date of the retrieved transition dates (at 50% level of the
cumulative distribution) to that of crop reaching the corresponding
growing stage across years using the statistical measures of R square
and root mean square error (RMSE). This wide range of comparisons
were designed to unveil how remotely sensed phenological measures
can be reconciled with field-based observations under the phenological
monitoring framework.

4. Results

4.1. Remotely sensed phenological characteristics

Under the phenological monitoring framework, time series pheno-
logical pre-processing was employed to smooth out spurious satellite
observations over the course of a year. Four time series phenological
models and four types of time series phenological characterization
methods were devised to extract the relevant phenological transition
dates that may be indicative of crop physiological growing stages. In
total, there were 16 modeling combinations for phenological extrac-
tions (Fig. 3). The rows in the figure represented different phenological
modeling methods (i.e., Beck, Klosterman, GU, and Spline), and the
columns in the figure denoted different phenological characterization
methods (i.e., threshold [TR], derivative [DE], curvature [CU], and Gu
[GU]). For instance, the combination of Beck - DE denotes that the

smoothed satellite observations were fitted using the Beck phenological
model, with the phenological transition dates estimated by the deri-
vative-based method. According to Section 3.3, three phenological
transition dates (i.e., SOS, POS, and EOS) were estimated using the
derivative-based and threshold-based methods, respectively. Four
transition dates (i.e., greenup, maturity, senescence, and dormancy)
were retrieved with the curvature-based method, and four transition
dates (i.e., upturn, stabilization, downtown, and recession) were de-
tected using the Gu-based method. Hence a wide range of phenological
characteristics were retrieved under the phenological monitoring fra-
mework to facilitate a comprehensive comparison with ground-based
phenological measures.

A total of 56 phenological transition dates were estimated under the
framework (Fig. 3). For example, with the Beck phenological model and
the derivative-based characterization method, the transition dates of
SOS, POS, and EOS were estimated. The density distributions of SOS for
corn and soybean in Illinois were plotted in Fig. 4. As for corn, the mean
transition dates of SOS varied from DOY 155 to 170, with the standard
deviation ranging from 6 to 12 days throughout the mapping years. In
respect of soybean, the retrieved mean SOS varied from DOY 168 to
187, and the standard deviation across the years was from 6 to 13 days.
With the Beck - DE method, the retrieved mean transition dates of SOS
for corn were about 1-3 weeks earlier than those estimated for soybean
from 2002 to 2017 in Illinois. The density distributions of Beck - DE
retrieved POS and EOS for corn and soybean were also derived (Figs. S1
and S2). Similar to SOS, the mean transition dates of POS achieved by
corn were earlier than those of soybean for the mapping years in Illi-
nois, with a mean difference of 10-24 days. In contrast, the mean
transition dates of EOS estimated for corn were much closer to those of
soybean. The absolute mean difference of EOS across the years between
corn and soybean was about 1 week (except 2012).

4.2. Field crop phenological measures

In Illinois, field phenological progress for corn and soybean was
surveyed and reported at the ASD level in the CPRs. From 2002 to 2017,
the median dates of corn and soybean reaching their respective phe-
nological development stages throughout Illinois were shown in Fig. 5.
Those median dates of phenological stages for both crops varied from
year to year, with relatively earlier dates in 2010 and 2012, and later
days in 2008 and 2009. The variations in the timing of crops entering
their phenological stages were partly attributable to crop planting time,
weather conditions (e.g., cold and wet weather conditions may delay
the timing of crops being planted and entering the subsequent stages),
soil moisture conditions, and farming practices. Over the mapping
years, the mean and standard deviation of the median phenological
dates for both crops were summarized in Table 3. Upon comparisons of
phenological progress between corn and soybean in Table 3 and Fig. 5,
corn emerged about 1-3 weeks earlier than soybean across years, which
corresponded to the density distributions of Beck - DE retrieved SOS for

Table 2
Comparisons of remotely sensed phenological characteristics with field crop growing stages.

Corn Soybean

Field stage Remotely sensed characteristic Field stage Remotely sensed characteristic

Threshold Derivative Curvature Gu Threshold Derivative Curvature Gu

Emerged SOS SOS Greenup Upturn Emerged SOS SOS Greenup Upturn
Silking POS POS Maturity Stabilization Blooming SOS/POS SOS/POS Maturity Stabilization
Dough POS POS Senescence Downturn Setting pods POS POS Maturity /Senescence Stabilization

/Downturn
Dent POS/EOS POS/EOS Senescence Downturn Turning yellow POS/EOS POS/EOS Senescence Downturn
Mature EOS EOS Senescence

/Dormancy
Downturn
/Recession

Dropping
leaves

EOS EOS Senescence
/Dormancy

Downturn /Recession

Harvest EOS EOS Dormancy Recession Harvest EOS EOS Dormancy Recession
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those two crops in Fig. 4. Besides, there were multiple comparable
timings between those two crops along the phenological development
trajectory, including the silking stage of corn and the blooming stage of
soybean, the dough stage of corn and the setting pods stage of soybean,
the mature stage of corn and the dropping leaves stage of soybean, and
the harvest stage of corn and the harvest stage of soybean. Throughout
the growing season, the ASD-based ground phenological observations
from a wide range of crop development stages in CPRs provide an in-
dispensably essential reference for evaluating the remotely sensed
phenological characteristics.

4.3. Characteristic phenology under the monitoring framework

Under the phenological monitoring framework, a wide range of
phenological transition dates were retrieved using the four re-
presentative phenological characterization methods. The cumulative
percentages of the retrieved phenological transition dates over time
were calculated for corn and soybean throughout Illinois. Using the
Beck-based phenological model as an example, the cumulative per-
centages of curvature-based greenup dates and Gu-based upturn dates
for corn in 2013 aligned with the cumulative percentages of corn going
into the emerged stage in CPRs (Fig. 6). The threshold-based and de-
rivative-based SOS dates tended to lie between the emerged and silking
stages of corn. The threshold-based POS, derivative-based POS, curva-
ture-based maturity, and Gu-based stabilization dates were around the

silking stage of corn in 2013. The cumulative percentages of curvature-
based senescence dates and Gu-based downturn dates for corn ap-
proached the cumulative percentages of corn reaching the dent stage in
ground observations. Also in Fig. 6, the threshold-based and derivative-
based EOS dates were linked with the mature stage of corn, and the
curvature-based dormancy dates and Gu-based recession dates were
connected with the harvest stage of corn. Hence those diverse pheno-
logical characteristics unified under the proposed framework could
facilitate the remote retrieval of a variety of crop physiological growing
stages. Among those four representative types of phenological char-
acterization methods, the cumulative distributions of transition dates
from the threshold-based and derivative-based methods (e.g., SOS
dates) were comparable in Fig. 6. Additionally, the phenological tran-
sition dates from the curvature-based and Gu-based methods (e.g.,
greenup and upturn dates) were comparable, and exhibited similar
alignments with ground-based measures.

To facilitate a more comprehensive comparison between the re-
motely sensed phenological characteristics and ground-based crop
phenological measures, the cumulative percentages of phenological
transition dates for all the mapping years (2002 to 2017) were calcu-
lated (e.g., Figs. 7 and 8 for corn, and Figs. 9 and 10 for soybean using
the Beck phenological model). Due to the large amount of devised
phenological characteristics, the transition dates from the same phe-
nological characterization methods were shown in same colors. For
example, all the transition dates (i.e. SOS, POS, and EOS) from the

Fig. 3. Phenological characteristics retrieved under the monitoring framework.
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derivative-based method were colored in purple, with the time se-
quence following that in Fig. 6. With respect to corn, the phenological
characteristics captured under the framework showed relatively

consistent alignment patterns across years. From 2002 to 2017, the
curvature-based greenup dates and Gu-based upturn dates were closely
linked to the emerged stage of corn. The curvature-based maturity dates

Fig. 4. The transition dates of SOS estimated by the Beck phenological model and the derivative-based characterization method for corn and soybean.

Fig. 5. The field phenological growing stages of corn and soybean in Illinois during 2002-2017.
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and Gu-based stabilization dates were characteristic of its silking stage.
The threshold-based POS and derivative-based POS dates were linked to
the dough phenological stage. The distribution patterns of curvature-
based senescence dates and Gu-based downturn dates were comparable
to those of corn going into the dent stage. The threshold-based EOS and
derivative-based EOS dates were connected with the mature stage of
corn, and the curvature-based dormancy dates and Gu-based recession
dates corresponded to its harvest stage. The further overlapping among
those four phenological characterization methods indicated that the
transition dates of corn extracted by the threshold-based and deriva-
tive-based methods were comparable. The curvature-based and Gu-
based transition dates showed similar cumulative distribution patterns.

As regards soybean, the phenological transition dates retrieved by
the framework also exhibited comparable patterns throughout the
mapping years. Similar to corn, the curvature-based greenup dates and
Gu-based upturn dates were characteristic of the emerged stage of
soybean from 2002 to 2017. The curvature-based maturity dates and
Gu-based stabilization dates were connected to its blooming period. The
threshold-based and derivative-based POS dates were linked to the
setting pods phenological stage. The curvature-based senescence dates
and Gu-based downturn dates had implications for the turning yellow
stage of soybean. The cumulative distributions of threshold-based and
derivative-based EOS dates were indicative of its dropping leaves stage.
The curvature-based dormancy dates and Gu-based recession dates
aligned with the timing of soybean reaching its harvest stage.
Comparable to the ground-based phenological observations, the

cumulative percentages of those transition dates showed logistic pat-
terns, except the curvature-based maturity dates. This deviation may be
attributable to the shorter growing seasons of soybean, which compli-
cated the detection of the inflection maturity point from the fitted
curve. Resonating with corn, the threshold-based and derivative-based
methods retrieved similar phenological characteristics, and the curva-
ture-based and Gu-based methods captured comparable phenological
transition dates.

4.4. Reconciling remotely sensed with ground-based phenological measures

Due to the weekly phenological observation interval and the missing
data issues in CPRs, we further evaluated the satellite versus ground-
based phenological measures by focusing on calculating the difference
between the median of the retrieved phenological transition dates and
the median dates of crops reaching specific growing stages. For in-
stance, with the Beck phenological model and the Gu-based char-
acterization method, the medians of the four transition dates (i.e., up-
turn, stabilization, downturn, and recession dates) were compared
against the median dates of corn reaching the emerged, silking, dent,
and harvest stages, respectively (Fig. 11). As for soybean, the medians
of those transition dates were compared to the median dates of soybean
going into the emerged, blooming, turning yellow, and harvest stages,
respectively. According to Section 4.3, those phenological growing
stages were the most relevant stages to the Gu-derived measures. Those
comparisons were conducted at the ASD level, with the yearly satellite
versus ground-based median pairs as observations in Fig. 11. The one-
to-one line in the figure indicated that the remotely sensed and ground-
based median pairs aligned with each other exactly. For both corn and
soybean, most of the median pairs were distributed along the one-to-
one line, particularly for the Gu-based downturn versus CPR-based dent
median dates of corn, and the Gu-based stabilization versus CPR-based
blooming median dates of soybean. The distribution patterns of the
Beck-Gu based median pairs in Fig. 11 exhibited similar trends as the
cumulative distribution patterns of the Beck-Gu derived measures in
Figs. 7, 8, 9 and 10.

The four phenological models (i.e., Beck, Klosterman, GU, and
Spline) were all retained for the comparisons (Figs. 12 and 13), as they
had comparable fitting results to NDVI observations after time series
phenological pre-processing under the framework. The mean RMSE

Table 3
The mean and standard deviation of the median observation dates of crop
growing stages in Illinois from 2002 to 2017.

Corn Soybean

Phenological
stage

Mean Standard
deviation

Phenological
stage

Mean Standard
deviation

Emerged 135 8 Emerged 152 7
Silking 193 6 Blooming 197 6
Dough 217 6 Setting pods 214 6
Dent 235 8 Turning yellow 254 5
Mature 258 10 Dropping leaves 264 5
Harvest 284 14 Harvest 284 8

Fig. 6. The cumulative percentages of phenological transition dates of corn retrieved by the Beck phenological model and four types of phenological characterization
methods in 2013 throughout Illinois.
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values between the fitted and observed NDVI throughout Illinois for the
Beck, Klosterman, GU, and Spline methods were 0.019, 0.023, 0.021,
and 0.019, respectively. Those four phenological models were colored
differently in Figs. 12 and 13. According to Table 2, the median date of
corn going into the emerged stage was compared to the medians of the
threshold-based SOS, derivative-based SOS, curvature-based greenup,
and Gu-based upturn dates (Fig. 12). Among those transition dates, the
curvature-based greenup and Gu-based upturn dates showed lower
RMSE values (about 6.08-14.09 days), along with relatively high R
square values (about 0.58-0.68), particularly from the spline phenolo-
gical model. It indicated that more than 58 percent of variability in the
median dates of the field-based emerged stage of corn could be ex-
plained by the devised phenological characteristics under the frame-
work. The average of the difference between the remotely retrieved and
field-based emergence measures was less than 2 weeks. Correspond-
ingly, the comparisons were made for the other phenological growing
stages and the results were in Fig. 12.

Across a wide range of corn development stages, the Beck pheno-
logical model maintained relatively good performance in retrieving the
transition dates, particularly for the silking, dough, dent, and mature
stages of corn. It achieved relatively high R square values and low
RMSE values. Different phenological characterization methods might
give rise to varying detection accuracies. With the dent stage of corn as
an example, the RMSE values ranged from 5.62 to 27.23 days through
phenological characterization methods (Fig. 12). This retrieval differ-
ence from the curvature-based senescence dates (less than 1 week dif-
ference) to the threshold-based POS dates (more than 3 weeks differ-
ence) emphasized the importance of selecting the appropriate
characterization methods in phenological estimations. Upon compar-
isons, the most suitable combinations of phenological modeling and
characterization methods for estimating the corn physiological growing
stages under the framework were shown in Table 4. Most of the com-
binations had R square values greater than 0.65, and RMSE less than 11
days. Considering the weekly observation interval of CPRs and the

Fig. 7. The cumulative distributions of satellite-Beck-retrieved versus CPR-based crop phenological stages of corn from 2002 to 2009 throughout Illinois.
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compositing process in the MODIS data, the 11-day (or less) difference
should be adequate for demonstrating the capabilities of the framework
in conducting systematic, consistent, and repetitive phenological
monitoring.

Additionally, the median dates of soybean reaching the phenolo-
gical growing stages were compared to the medians of corresponding
transition dates in Table 2. The R square and RMSE values were cal-
culated and shown in Fig. 13. This suite of desired combinations of
phenological modeling and characterization methods yielded varying
phenological estimation results, with R square ranging from 0.53 to
0.68 and RMSE from 4.96 to 10.95 days. As in corn, the Beck pheno-
logical model exhibited relatively good performance across diverse
phenological stages, though the other phenological models might
achieve favorable retrieval accuracies for certain phenological stages.
By comparisons, the most desirable combinations of phenological
modeling and characterization methods for soybean phenological re-
trieval were in Table 5. For most development stages, the R square

values were higher than 0.6 and the RMSE values were less than 11
days. It indicated that the phenological framework could adequately
estimate the soybean development stages besides its good performance
for corn.

5. Discussion

Encompassing time series phenological pre-processing, time series
phenological modeling, and time series phenological characterization,
the framework is devised to embrace the most essential components in
crop phenological monitoring. This framework evaluated a combina-
tion of 56 phenological transition dates in its exploratory prototype,
and showed good performance (R square greater than 0.6 and RMSE
less than 1 week for most desired combinations) in phenological re-
trievals for both corn and soybean at the ASD level. The systematic
comparisons among the combinations presented a comprehensive
roadmap to reconcile the remotely sensed phenological measures with

Fig. 8. The cumulative distributions of satellite-Beck-retrieved versus CPR-based crop phenological stages of corn from 2010 to 2017 throughout Illinois.
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ground-observed physiological growing stages of crops. Among the
time series phenological models, Beck generally maintained good per-
formance in estimating the phenological transition dates, possibly due
to unimodal and clear phenological patterns of crops, though other
models might achieve comparable performance in specific stages.

Despite the importance of crop phenology in agronomic monitoring,
previous studies have mainly focused on the remote detection of the
start and end of growing season. The limited selections of phenological
characteristics in those studies may not adequately correspond to the
diverse range of crop physiological growing stages, particularly for the
dough and dent stages of corn, and setting pods and turning yellow
stages of soybean. The difficulty in linking the remotely sensed with
ground-based phenological measures remains a major hurdle towards
effective crop phenological monitoring. With a combination of 56
phenological characteristics, the framework developed in this study
conducts a comprehensive comparison among a wide range of meth-
odologies to optimize the remotely sensed phenological retrieval. It
provides a concrete guidance on how various crop phenological stages
can be estimated through remotely sensed time series measures. This
framework is developed with corn and soybean in Illinois as examples,
and can further be evaluated in other regions or for other crops in fu-
ture studies. It represents a desired first step towards formulating
standard crop phenological monitoring protocols via remote sensing.

Under the devised framework, a suite of time series phenological

models and time series phenological characterization methods have
been evaluated. As both corn and soybean maintain unimodal growing
seasons with strong phenological patterns, the four phenological
models exhibited comparable performances in a majority of growing
stages. In contrast, different phenological characterization methods
showed varying accuracies in retrieving similar crop growing stages, or
were characteristic of dramatically different stages. Among the phe-
nological characterization methods, the transition dates estimated by
threshold-based and derivative-based methods were characteristic of
similar crop growing stages, while the transition dates retrieved by
curvature-based and Gu-based methods were mostly comparable. More
attentions need to be paid to phenological characterization methods for
retrieving desired growing stages. Despite the overall good performance
of the framework, the silking and dough stages of corn, and the setting
pods stage of soybean, exhibited larger differences between remotely
sensed and ground-observed dates (i.e., RMSE about 11 days) compared
to other physiological stages. For those physiological stages, the in-
tegration of the shape model under the framework may further increase
the retrieval accuracy, though the calibration of the shape model re-
quires ancillary ground-based crop phenological growth data. Besides,
the framework holds strong potentials to be extended to intensified
agricultural (e.g., double crops) regions if the crop growth cycle can be
delineated. The delineation may benefit from the devised seasonality
filtering adjusted for the magnitude threshold of seasonal signals. To be

Fig. 9. The cumulative distributions of satellite-Beck-retrieved versus CPR-based crop phenological stages of soybean from 2002 to 2009 throughout Illinois.
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Fig. 10. The cumulative distributions of satellite-Beck-retrieved versus CPR-based crop phenological stages of soybean from 2010 to 2017 throughout Illinois.

Fig. 11. Comparisons between the median of Beck-Gu retrieved transition dates and the median dates of crops going into corresponding physiological growing stages
throughout Illinois at the ASD level from 2002 to 2017.
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extended to more intensified or diversified agricultural regions, the
framework may also benefit from the pheno-network model (Diao,
2019b). The pheno-network model is a non-parametric, complex net-
work-based model that represents the complicated phenological process
with a network structure. It may be a desired alternative, particularly in
cloud heavily affected or complicated agricultural regions, as the
pheno-network model can be constructed with partial-year remote
sensing time series.

Validating the remotely retrieved crop phenophases with field
phenological measures is challenging, as crop fields are usually pro-
prietary and field phenological observations of crops may not corre-
spond to the spatial resolution of MODIS. As a tradeoff between the
state-level and the site-specific ground phenological observations, the
ASD-level phenological reference data provide an adequate summary of
crop phenological progress over wide geographical regions, as well as
accommodate the large-scale spatio-temporal phenological variations
within the state. This systematic and consistent dataset collected by
NASS is among the most appropriate ones to develop the phenological
monitoring framework that can reconcile the remotely sensed with
ground-based phenological measures. The MODIS pixels with fractions
of corn (or soybean) higher than 90% are selected in this study to
balance the pixel purity and sample size for ASD-level crop phenolo-
gical comparisons. Despite the relatively pure pixels selected, some
pixels may have lower corn (or soybean) fractional covers due to the
varying pixel footprint sizes at different view angles of MODIS. To

further reduce varying pixel footprint influence, aggregating the MODIS
data to coarser resolutions (e.g., 1km) might be a solution (Tan et al.,
2006). Yet it might dramatically reduce the sample size of relatively
pure corn (or soybean) pixels, and the limited samples might not be
representative for ASD-level crop phenological comparisons. It would
be desired to test the influence of pixel purity, with varying MODIS
pixel footprint sizes accommodated, on the phenological detection ac-
curacies in future studies using more adequate ground reference data.

The phenological monitoring framework is developed using the time
series of BRDF-corrected MODIS MCD43A4 data. With its high temporal
resolution, this daily 16-day composite data from both Terra and Aqua
represents an adequate source to monitor the crop phenological pro-
gress at regional to global scales, particularly for relatively large crop
fields. As for small-holder agricultural systems, the framework can
potentially be extended to retrieve the critical phenological transition
dates, but with the satellite data of finer spatial and temporal resolu-
tions (e.g., harmonized Landsat and Sentinel-2 [HLS]). The recent ad-
vances in retrieving vegetation phenology at 30m spatial resolution
using the HLS data can help ease the mixed phenology issue of crops at
the field level (Bolton et al., 2020; Gao et al., 2020; Zhang et al., 2020).
Also a multitude of data fusion algorithms have been developed to in-
tegrate MODIS with finer spatial resolution imagery (e.g., Landsat and
Sentinel-2) to generate daily Landsat-wise imagery (Zhu et al., 2018).
With the harmonized or fused imagery, the framework can potentially
benefit the field-level crop phenological monitoring for small-holder

Fig. 12. The RMSE and R squares of the 56 retrieved transition dates of corn at the ASD level in Illinois.
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agricultural systems. Additionally, the development of near-surface
remote sensing techniques (e.g., PhenoCam) facilitates the acquisition
of consistent and systematic ground phenological observations at field
levels, which are complementary to the ASD-level data and can be
employed to further evaluate the framework in those agricultural sys-
tems.

Among a range of vegetation indices, NDVI has been widely utilized
to characterize crop vigor and photosynthetic activities. Under the de-
veloped framework, tracking the change of NDVI values throughout the
year shows great promise for crop phenological retrieval. Besides NDVI,
other vegetation indices (e.g., green chlorophyll vegetation index
[GCVI] and wide dynamic range vegetation index [WDRVI]) have also
been used in crop studies. Further inspection of those vegetation indices
on the retrieval results will facilitate the building of a more robust and
comprehensive framework. Overall, the phenological monitoring fra-
mework provides a systematic set of methodologies to simultaneously
retrieve a wide range of crop physiological growing stages that have
marked ecological implications. The wealth of phenological informa-
tion opens up unique opportunities to investigate how various farm
management activities arranged at different crop growing stages affect
the crop growth and subsequent productivity. It will also shed light on
the shared and divergent effects of climate change or extreme weather
conditions on the crop growth at various physiological stages (Wu et al.,
2013; Zhou et al., 2017). Those growing stage-specific assessments will
potentially enhance our understanding of the complex mechanisms

Fig. 13. The RMSE and R squares of the 56 retrieved transition dates of soybean at the ASD level in Illinois.

Table 4
The desired combination of phenological modeling and characterization
methods for estimating corn growing stages under the devised framework.

Field stage Phenological model Phenological characteristic R square RMSE

Emerged Spline Gu-based upturn 0.68 7.85
Silking Beck Curvature-based maturity 0.66 10.31
Dough Beck Derivative-based POS 0.67 9.88
Dent Beck Curvature-based

senescence
0.7 5.62

Mature Beck Derivative-based EOS 0.78 7.5
Harvest Spline Gu-based recession 0.78 8.25

Table 5
The desired combination of phenological modeling and characterization
methods for estimating soybean growing stages under the devised framework.

Field stage Phenological
model

Phenological
characteristic

R square RMSE

Emerged Spline Gu-based upturn 0.68 6.06
Blooming Spline Gu-based stabilization 0.64 4.96
Setting pods Beck Derivative-based POS 0.53 10.95
Turning yellow Gu Gu-based downturn 0.62 6.83
Dropping

leaves
Beck Derivative-based EOS 0.67 5.5

Harvest Beck Curvature-based
dormancy

0.66 5.33
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underlying the crop growth in response to varying environmental
stresses, which will help make more adaptive farm management stra-
tegies towards sustained agricultural development.

6. Conclusions

The world population will reach about 9.7 billion in the next 30
years, with a rough increase of 83 million people every year. The ra-
pidly growing population will drastically increase the global demand of
agricultural crops, posing significant threats to food security. Remote
monitoring of crop phenological dynamics in a consistent and sys-
tematic manner plays a vital role in optimizing the farm management
activities and evaluating the agricultural resilience to extreme weather
conditions and future climate change. In this study, we developed a
remote sensing phenological monitoring framework that can reconcile
satellite-based with ground-based phenological measures. This frame-
work mainly comprises three components: time series phenological pre-
processing, time series phenological modeling, and time series pheno-
logical characterization. As an exploratory prototype, the framework
retrieved a total of 56 phenological transition dates that were subse-
quently evaluated with ASD-level ground phenological measures. The
results indicated that the framework is able to retrieve a wide range of
crop physiological growing stages for both corn and soybean, with R
square greater than 0.6 and RMSE less than 1 week for most stages. It
largely extends the limited satellite phenological measures to a range of
phenological transition dates that are characteristic of essential crop
growing stages. The phenological monitoring framework shows great
promise to enhance our understanding of crop phenological responses
to varying environmental stresses, and to help make stage-specific
adaptive management strategies to improve crop productivity.
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