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Abstract. Accurate estimation of forest aboveground biomass is crucial for monitoring ecosys-
tem responses to environmental change. Passive optical and active microwave remote sensing
plays an important role in retrieving the forest biomass. However, optical spectral reflectance
gets saturated in the relatively high-density vegetation area and microwave backscattering is
largely influenced by the soil underneath when the vegetation coverage is relatively low.
Both of these conditions affect the biomass retrieval accuracy. A synergistic biomass retrieval
model through the integration of optical (PROSAIL) and microwave (MIMICS) radiative trans-
fer models was put forward. The proposed model unified the vegetation and soil conditions of
PROSAIL and MIMICS models, and determined the optical-alone model, microwave-alone
model, and the contributions of key optical and microwave factors to biomass retrieval with the
simulated database. The database consisted of the optical bidirectional reflectance and full
polarization microwave backscattering of the broad-leaved forest canopy under various condi-
tions. The synergistic model was verified by comparing with the ground measurements and the
results of the optical-alone and microwave-alone models. The results indicated that the proposed
synergistic retrieval model was more effective than the optical-alone or microwave-alone model,
and showed considerable potential in forest aboveground biomass retrieval by integrating passive
optical and active microwave remote sensing. © 2015 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.JRS.9.096069]
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1 Introduction

Forest aboveground biomass is an important indicator of a forest ecosystem’s ability to fix
carbon and sequestrate carbon dioxide from the atmosphere.1 In the International Geosphere-
Biosphere Programme, the carbon cycle is emerging as a research hotspot of global change and
terrestrial ecosystems. Therefore, accurate estimation of forest aboveground biomass plays an
important role in terrestrial carbon accounting and global climate change modeling studies.2

Traditional field methods are time-consuming, costly, difficult to implement in remote areas,
and only limited to small areas. Due to the ability to collect information over regional and global
scales, remote sensing has been increasingly used in estimating forest biomass.3–9 Lu et al.10

found that the fifth band of Landsat5 thematic mapper (TM), linear transformed indices,
such as the first component in a principal component analysis, the brightness of the tasseled
cap transform (TCB),11 and albedo were most strongly correlated with forest biomass.
Mutanga and Skidmore12 concluded that a simple ratio vegetation index yielded the highest
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correlation coefficient with biomass as compared to the narrow band normalized difference veg-
etation index (NDVI) and transformed vegetation index (TVI). Kazar and Warner13 assessed the
potential of several spectral radiances from Landsat5 TM imagery to estimate biomass, including
raw red and near-infrared radiances, TCT indices, and four vegetation indices, namely enhanced
vegetation index (EVI), soil adjusted vegetation index (SAVI), TVI, and NDVI. Among the
spectral radiances examined, they found that TC and EVI were most strongly correlated
with biomass. In addition to the passive optical remote sensing, active microwave remote sens-
ing, with its advantages of cloud penetration, all-time and all-weather coverage, has also been
explored in estimating the forest biomass. For example, radar backscattering in P- and L- bands
has been found to be highly correlated with major forest parameters, such as tree age, tree height
(H), the diameter at breast height (DBH), basal area, and biomass.14–17 Harrell et al.18 evaluated
four techniques for biomass estimation in pine stands using shuttle imaging radar C- and L-bands
multipolarization radar data and found that the L-band horizontal-transmit/horizontal-receive
(HH) polarization data were the critical elements in biomass estimation. The integration of
the L-band HH polarization data and the C-band horizontal-transmit/vertical-receive (HV)
(or HH) polarization data in these techniques significantly the improved biomass estimation
performance. Englhart et al.19 investigated the potential of X- and L-bands synthetic aperture
radar (SAR) data to estimate aboveground biomass in intact and degraded tropical forests and
concluded that the multitemporal L- and X-bands combined model achieved the best results for
large-scale biomass estimations in tropical forests.

Although a number of studies have evaluated remote sensing techniques for quantifying bio-
mass, the ability to accurately retrieve forest biomass with passive optical or active microwave
remote sensing is still limited. On one hand, passive optical remote sensing can be greatly
obscured by frequent cloud cover, rain, and snow. Moreover, optical spectral reflectance will
become saturated in high-density canopy vegetation areas. On the other hand, microwave remote
sensing can be heavily influenced by soil moisture and soil roughness when the vegetation cover-
age is relatively low. Given that microwave remote sensing is much less sensitive to atmospheric
moisture than optical sensors, it has the advantage of dense vegetation detection.20,21 Further-
more, optical remote sensing can effectively preserve the spectral information when the vegeta-
tion canopy density is not high. Therefore, it is urgently necessary to develop alternative
approaches that can combine passive optical with active microwave remote sensing to improve
the estimation accuracy of forest biomass and other vegetation parameters.

The main objective of this research is to develop a synergistic retrieval model through the
joint simulation using optical and microwave radiative transfer models. Optical and microwave
radiative transfer models can simulate the principles and procedures of the interaction between
electromagnetic waves and vegetation. This joint simulation will provide the theoretical foun-
dation and guidance for forest biomass estimation.

Specifically, the joint optical and microwave radiative transfer models were built by first
unifying the vegetation and soil conditions in the two models. And then the database of optical
bidirectional reflectance and full polarization microwave backscattering of the broad-leaved
forest were simulated using these two joint models. Based on the joint simulated database,
a synergistic biomass retrieval model integrating optical and microwave remote sensing was
developed. Finally, the performance of the synergistic retrieval model was evaluated by
comparing with the ground measurements and the optical-alone and microwave-alone models
results.

2 Study Area and Data

2.1 Study Area Description

The study focused on Genhe area in the west of Greater Hinggan which is the largest primeval
forest in the north of China. The specific study area (50°48′ N, 121°34′ E), which is part of
Genhe area, has an area of 25 × 25 km2 (Fig. 1). It is located in the frigid temperate zone
and has continental monsoon climate. The annual mean temperature is −5.5°C and the annual
mean precipitation is approximately 464 mm, with 63% of that falling between June and August.
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The dominant vegetation type in this area is broad-leaved forest that comprises mostly Betula,
with some Larix spp. and Pinus sylvestris.

2.2 Data Acquisition

2.2.1 Remote sensing data

Two satellite images were used in this experiment: a multispectral image (Landsat5 TM) col-
lected on September 9, 2012, and a RADARSAT-2 image collected on June 30, 2013.
RADARSAT-2 is a high-resolution commercial radar satellite that was successfully launched
on December 14, 2007, by Canadian Space Agency. The satellite has a SAR with multiple polari-
zation modes, including a fully polarimetric mode in which HH, HV, vertical-transmit/vertical-
receive (VV), and vertical-transmit/horizontal-receive (VH) polarized data are acquired. Its
frequency is 5.6 GHz (C-band) and the highest resolution is 1 m in spotlight mode (3 m in
ultra fine mode) with a 100 m positional accuracy requirement. In this research, a
RADARSAT-2 full polarization single-look complex image with a mean incident angle of
36.6 deg was acquired.

2.2.2 Terrestrial surveying data

A field survey of the sample plots was conducted from mid-August to early September. In this
study, the broad-leaved forest (Betula) was taken as the research object without considering the
effects of small amounts of coniferous forest. Twelve sample plots (25 × 25 m2) were selected
and they were all positioned within a homogeneous area far away from the road. Within each
plot, for every tree that has a DBH greater than 3 cm, H, leaf area index (LAI), DBH, and crown
breadth (CB) were recorded. The tree DBH was measured at 1.3 m above the ground, and the
values ranged from 5.0 to 38.2 cm with an average of 13.5 cm. The tree height values varied from
5.1 to 23.8 m with a mean value of 13.35 m.

2.3 Data Processing

Remote sensing data and field survey data were processed and the procedures were as follows:

(1) The Landsat5 TM image was radiometrically calibrated to the top of the atmosphere
radiance using postlaunch calibration coefficients before then being atmospherically cor-
rected using the atmospheric radiative transfer model: 6S (second simulation of satellite
signal in the solar spectrum).22 The image was then geometrically corrected using the
ground control points with an overall error of 0.46 pixels.

(2) The RADARSAT-2 image was radiometrically calibrated to obtain the backscattering
coefficients transformed from the digital number using the Next European Space Agency

Fig. 1 Geographic location of the study area.
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(ESA) SAR Toolbox (NEST) software.23 To compensate for speckle noise, the
“Enhanced LEE Adaptive Filter” was applied to replace the central pixel of a moving
window (3 × 3 pixels) with the average value for the pixels in the window. The image
was then geometrically corrected using the preprocessed TM image with an overall error
of 0.56 pixels. The terrain of the site considered in this study was comparatively flat,
thus, the terrain correction was not made. After that the RADARSAT-2 image was
resampled to the resolution of the TM image (30 m). The TM and RADARSAT-2 images
were all resized to match the study area (25 × 25 km2).

(3) Based on the tree biophysical data (H, LAI, DBH, and CB) collected from 12 sample
plots, the plot biomass was calculated. First, the biomass of each part of each individual
tree was calculated by applying the allometric models24 (Table 1) devised for the
broad-leaved forest in the northeast of China based on DBH and H. Second, the
biomass of each individual tree was obtained by summing the calculated biomass of
its component parts. Third, the biomass of each individual tree in a plot was summed
to get the plot biomass. The plot biomass was measured in kilograms (kg). After getting
the total biomass of all trees in a plot, the biomass density of a plot was measured in
megagrams per hectare (Mg∕ha). The total aboveground biomass for each individual plot
varied between 76.9 and 159.3 Mg∕ha and the mean value for these 12 plots was
100.9 Mg∕ha.

3 Methodology

3.1 Building Simulated Database based on Joint Optical and Microwave
Radiative Transfer Models

3.1.1 Model introduction

PROSAIL. The PROSAIL25 model is a coupled model which includes spectral models for
leaf optical properties (PROSPECT) and canopy reflectance (SAIL). PROSPECT is a radiative
transfer model based on Allen’s generalized “plate model.”26,27 It divides each leaf into N layers,
and describes the diffuse radiation in each layer. The reflected radiation of the top layer and the
transmitted radiation of the bottom layer are computed by integrating all layers. The advantage of
PROSPECT is that the spectral refractive index, determined by the specific absorption of water
and pigments,28 is independent of leaf type. The values are computed by fitting the relation
between leaf biochemical parameters and leaf optical spectra.29 The accuracy of simulated
leaf spectra has been extensively validated using the measured spectral data of many kinds
of leaf structures.

The SAIL model30 is based on the Kubelka–Munk theory. This model considers upward and
downward solar direct radiation flux and sky diffuse radiation flux. The outgoing radiation flux
of the view direction is computed by accounting for the extinction and scattering interactions of
canopy constituents. Directional reflectance is described as the ratio of the outgoing radiation
flux of the view direction to the total incoming radiation flux. The model assumes that the can-
opy is continuous and takes into account major factors affecting the radiation flux in plant

Table 1 The best-fit allometric model used for estimation of above-ground biomass (AGB).

Regression model r p

W stock ¼ 0.1193ðDBH2HÞ0.8372 0.927 <0.05

W branch ¼ 0.002ðDBH2HÞ1.12 0.938 <0.05

W leaf ¼ 0.000015ðDBH2HÞ1.472 0.911 <0.05

Note:W stock,W branch, andW leaf are the biomass of stock, branch, and leaf (kg). DBH and H are the diameters
at breast height in centimeters and tree height in meters, respectively.
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canopies, such as LAI, average leaf angle, leaf optical spectra, and soil spectra. Therefore, the
simulated canopy reflectance can reflect the real canopy situation to a large degree.

MIMICS. The Michigan Microwave Canopy Scattering (MIMICS) model31 is based on the
first-order solution of the microwave radiation transfer model for a continuous forest canopy. It
has been the most widely used theoretical model to study vegetation scattering properties. The
model assumes that the forest comprises three layers: crown, trunk, and ground surface. The
primary constituents of the crown layer are leaves and branches which obey a random distri-
bution in the azimuthal direction. The trunk layer is described by cylinders with a certain size and
random inclination distribution. The ground layer is simplified as a rough surface. There are four
kinds of scattering mechanisms: direct scattering from the crown, direct scattering from the
ground, single scattering between the crown and the ground, and dihedral reflection between
the trunk and the ground. The MIMICS model is able to simulate the copolarization and
cross-polarization microwave backscattering of frequencies ranging from 0.5 to 10 GHz and
incidence angles between 10 deg and 70 deg.

3.1.2 Jointing optical and microwave models and simulating database

PROSAIL and MIMICS models describe canopy structures, physiological and biochemical char-
acteristics of canopy constituents, soil characteristics, and view geometries in different focuses.
According to the differences and relations between the two models, the joint optical and micro-
wave radiative transfer models were built by unifying the vegetation and soil conditions of the
two models. Then the database of optical bidirectional reflectance and full polarization micro-
wave backscattering of the broad-leaved forest were acquired using joint simulation.

Unifying leaf water content. The PROSPECT model can construct the relation between
leaf biochemical components and spectral characteristics and describe the optical properties of
plant leaves from 400 to 2500 nm. Scattering in the PROSPECT model is described using a
spectral refractive index (n) and a parameter characterizing the leaf mesophyll structure (N).
Absorption is modeled using the pigment concentration (Cab), water content (Cw), and the cor-
responding spectral absorption coefficients (Kaþb and Kw). It should be noted that leaf water
content in the PROSPECT model is the water content per unit leaf area (Cw), but in the MIMICS
model, it is defined as the ratio of water content to leaf dry weight, and it is denoted as Lgmc. The
leaf water content of these two models was unified using specific leaf weight (SLW). The equa-
tions for the SLW and leaf water content transition relationship can be written as

SLW ¼ DW

A
; (1)

Cw ¼ SLW × Lgmc; (2)

where DW is the leaf dry weight (g) and A is the leaf area (cm2).

Unifying soil moisture content. In the study area, the most important factor affecting the
soil reflectance was soil moisture content. In the PROSAIL model, soil moisture is defined as soil
gravimetric moisture content (Sgmc), while in the MIMICS model, it is defined as soil volumetric
moisture content (Svmc). These two values can be transformed to each other and unified by using
soil bulk density. The measured value of the soil bulk density was 1.01 g∕cm3 in the study area
with the cutting ring method.

Unifying canopy structure parameters. As an important canopy structure parameter,
leaf spatial distribution has an important effect on both canopy optical reflection and microwave
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backscattering. The probability distribution of leaf area inclination was unified by using a simple
Beta distribution model.32 Another important canopy structure parameter in these two models
was LAI.33 In the MIMICS model, LAI was refined into canopy thickness (Hcanopy), diameter of
a leaf (Dleaf), and volume density of leaves (Nleaf). The conversion equation can be written as

LAI ¼ Nleaf ×Hcanopy × π ×
�
Dleaf

2

�
2

× 10−4: (3)

Model input parameters. In addition to the relevant parameters that needed to be unified
using the previously mentioned steps, the values of common parameters and unique parameters
in the two models needed to be determined. Leaf reflectance, leaf transmittance, and soil reflec-
tance were important parameters of the PROSAIL model. Leaf spectral characteristics were rel-
evant to Cab, Cw, dry matter content (Cm), and N. Soil spectral reflectance was relevant to Sgmc

and texture, while the soil texture was not taken into consideration in this paper. The MIMICS
model focused on the characteristics affecting microwave backscattering, such as leaf water con-
tent and structure of components, as well as soil moisture and texture. These characteristics can
be described by parameters Lgmc, Dleaf , Svmc, soil surface RMS height (Srmsh), and soil surface
correlation length (Scl). The MIMICS model took both needles and broad leaves into consid-
eration. Given that only broad-leaved forest was the research object in the study, the MIMICS
model was appropriately modified. According to field measurements (H, LAI, DBH, and CB)
and the investigation of the study area, the values of input parameters and the corresponding
steps in these two models were listed in Tables 2 and 3.

Through setting up common parameters, unique parameters and relevant parameters, the joint
optical and microwave radiative transfer models were built. Then the database of optical bidi-
rectional reflectance and full polarization microwave backscattering of the broad-leaved forest
were acquired using joint simulation.

Table 2 Input parameters of the PROSAIL model.

Model Parameter Abbreviation Range of variation Step

PROSAIL Common
parameter

Mean leaf angle (deg) ALA 25 to 65 5

Tree height (m) H 5 to 40 1

Stand density (trees/ha) DEN 200 to 2800 200

Unique
parameter

Wavelength (nm) λ 400 to 2500 5

View zenith angle (deg) θv 0 to 50 10

Solar zenith angle (deg) θs 30 0

Relative azimuth angle (deg) φ 0 0

Chlorophyll concentration (μg∕cm2) Cab 30.5 0

Dry matter content (g∕cm2) Cm 0.008 0

Structural parameters of the leaf N 1.5 0

Atmospheric visibility (km) vis 25 0

Relevant
parameter

Leaf water content (g∕cm2) Cw Transform by
Eq. (2)

—

Soil gravimetric moisture
content (%)

Sgmc Transform by soil
bulk density

—

Leaf area index LAI Transform by
Eq. (3)

—
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Table 3 Input parameters of the MIMICS model.

Model Parameter Abbreviation Range of variation Step

MIMICS Common
parameters

Mean leaf angle (deg) ALA 25 to 65 5

Tree height (m) H 5 to 40 1

Stand density (trees/ha) DEN 200 to 2800 200

Unique
parameters

Frequency (GHz) f C-band (5.6 GHz),
L-band (1.27 GHz)

—

Polarization — VV, HH, VH, HV —

Incidence (deg) θ 10 to 50 10

Soil surface RMS height (cm) Srmsh 2 —

Soil surface correlation
length (cm)

Scl 10 —

Parameters about stock,
branch, and leaf

Table 4

Relevant
parameters

Leaf water content (%) Lgmc 60 to 90 5

Soil volumetric moisture
content (g∕cm3)

Svmc 0.05 to 0.5 0.05

Leaf diameter (cm) D leaf 3.5 —

Canopy thickness (m) Hcanopy 0.5 to 35 —

Volume density of leaves (n∕m3) N leaf 2 to 1500 —

Note: VH and HV polarization backscattering coefficients simulated by MIMICS were equal, and thus only VH
polarization backscattering was used in this study. Hcanopy and N leaf were calculated by a series of empirical
formulae, thus there were not fixed step.

Table 4 Input parameters about stock, branch, and leaf in the MIMICS model.31

Structure Parameter Abbreviation

Stock Diameter (m) D_stock

Height (m) H_stock

Branch Primary branch Moisture (%) M_branch1

Length (m) L_branch1

Diameter (m) D_branch1

Density (n∕m3) DE_branch1

Secondary branch Moisture (%) M_branch2

Length (m) L_branch2

Diameter (m) D_branch2

Density (n∕m3) DE_branch2

Leaf Thickness (cm) T_leaf

Density (n∕m3) DE_leaf

Zhang, Shao, and Diao: Synergistic retrieval model of forest biomass. . .

Journal of Applied Remote Sensing 096069-7 Vol. 9, 2015



3.2 Building a Synergistic Retrieval Model of Biomass

3.2.1 Synergistic mechanism analysis

The key of building the synergistic retrieval model was to determine the weights of optical and
microwave data under different vegetation conditions. The optical bidirectional reflectance of the
vegetation canopy is affected by the space within canopies and the volume density of compo-
nents to a large extent. When the vegetation coverage is relatively low, optical bidirectional
reflectance can more effectively capture the vegetation information than microwave backscatter-
ing. The microwave backscattering is largely influenced by the soil underneath in this scenario,
thus the synergistic retrieval model primarily depends on the optical data. On the contrary, in the
relatively high-density vegetation areas, optical multiple scattering within canopies will be
stronger and optical radiation starts to saturate, which leads to almost constant canopy optical
reflectance. In this situation, the strong penetrability of microwave backscattering will beneficial
for acquiring more complete canopy parameters information. Therefore, the equation of the syn-
ergistic retrieval model can be written as

Biomass ¼ ða × Indexþ bÞ × fðαÞ þ ½1 − ða × Indexþ bÞ� × fðβÞ; (4)

where fðαÞ and fðβÞ were the optical-alone and microwave-alone retrieval models,
respectively;α and β were the optical and microwave sensitive indices, respectively; index
was the optical key factor; a and b were the weighting factors acquired using the sensitivity
analysis. The details of the parameters used in this equation were introduced in the following
sections.

3.2.2 Optical retrieval model

Sensitivity analysis between typical vegetation indices and biomass. The canopy
optical reflectance under different biomass conditions was simulated using the PROSAIL model,
given that all other parameters (e.g., vegetation biochemical parameters and view geometries)
were fixed to the mean values. Figure 2 showed the simulated reflectance curves under different
biomass conditions. The wavebands obviously influenced by biomass variation in visible and
near-infrared regions contained the wavelengths: 470� 5, 550� 5, 670� 5, 780� 5, 900� 5,
930� 5, 1060� 5, 1190� 5, and 1260� 5 nm.

Optical vegetation indices are usually designed based on the significant difference between
near-infrared and red reflectance. Considering the wavebands obviously affected by biomass
variation (Fig. 2) and the commonly used vegetation indices, several optical vegetation indices

Fig. 2 The canopy reflectance curves under different biomass conditions.
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were selected, including modified soil adjusted vegetation index (MSAVI), ratio vegetation
index (RVI), TVI, NDVI, and EVI (Table 5). Given the influence of soil reflectance, based
on the optical simulated database, the impacts of soil moisture content on the relationships
between the vegetation indices and biomass were analyzed. Figure 3 showed the correlations
between the vegetation indices and biomass under different soil moisture content conditions.

Table 5 Vegetation indices and calculation formulas.

Vegetation index Formula

MSAVI R780 þ 0.5 − sqrt½ðR780 þ 0.5Þ ∧ 2 − 2 × ðR780 − R670Þ�

TVI ½120 × ðR780 − R550Þ − 200 × ðR670 − R550Þ�∕2

NDVI (ðR780 − R670Þ∕ðR780 þ R670Þ

RVI R780∕R670

EVI 2.5 × ðR780 − R670Þ∕ð1þ R780 þ 6 × R670 − 7.5 × R470Þ

Fig. 3 Sensitivity analysis between biomass and (a) modified soil adjusted vegetation index
(MSAVI), (b) transformed vegetation index (TVI), (c) normalized difference vegetation index
(NDVI), (d) ratio vegetation index (RVI), (e) enhanced vegetation index (EVI).
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Figure 3 illustrated that the values of biomass were between 200 and 300 Mg∕ha when the
five vegetation indices got saturated. At the saturated location, the value of biomass for NDVI
was close to that for EVI. Meanwhile, the values of biomass for MSAVI, TVI, and RVI were
similar, but higher than that for the other two indices. Before the vegetation indices got saturated,
the rate of change of NDVI was far higher than that of EVI, and the rate of change of MSAVI was
higher than that of TVI and RVI. It indicated that NDVI and MSAVI were more sensitive to the
change of biomass in this study area. But the impact of soil moisture content on the relationship
between NDVI and biomass was conspicuous for the cases of relatively low biomass, while there
was little influence on the relationship between MSAVI and biomass. Therefore, MSAVI was
chosen as the optimal optical vegetation index for the further regression analysis.

Regression analysis. In Fig. 3, the trend of the scatterplot (a) indicated that the relation-
ship betweenMSAVI and biomass could be fitted using an exponential model [Eq. (5)]. 96.8% of
the variation in biomass could be explained by MSAVI and the root-mean-square error (RMSE),
[Eq. (14)], was 23.587. Therefore, MSAVI was taken as the optical sensitive index α, and the
regression model between MSAVI and biomass was taken as the optical-alone retrieval model,
namely fðαÞ in Eq. (4).

Biomass ¼ 3.336 × e7.903×MSAVI: (5)

3.2.3 Microwave retrieval model

Sensitivity analysis between backscattering and biomass. Using the microwave
backscattering coefficients simulated database, the sensitivity was analyzed between the micro-
wave full polarization backscattering coefficients and biomass under different soil moisture con-
tent conditions. Different combinations of frequency (C-band or L-band) and polarization (VV,
HH, or VH) of the microwave backscattering were explored in the analysis (Fig. 4).

From Fig. 4, the combination of C-band (5.6GHz) and VH polarization, and the combination
of L-band (1.27 GHz) and HH (or VH) polarization were found to be more sensitive to the
change of biomass. The polarization ratio may enhance the response of microwave backscatter-
ing to biomass. Based on these sensitive combinations, three polarization ratios (Ratio1: C-HH/
C-VH, Ratio2: L-HH/C-VH, and Ratio3: C-VH/L-VH) were designed in this study. The sensi-
tivity analysis was then conducted between the polarization ratios and biomass (Fig. 5). Figure 5
showed that the sensitivity between the polarization ratio and biomass was the highest in Ratio2,
followed by Ratio1, and the lowest in Ratio3. Given the relatively high sensitivity in Ratio1
scenario and the frequency of RADARSAT-2 (only C-band) acquired in the study area,
Ratio1 was chosen as the sensitive microwave index and used in the following regression
analysis.

Regression analysis. According to the trend of the Ratio1 scatterplot in Fig. 5, the power
exponential model was used to fit the relationship between Ratio1 and biomass [Eq. (6)]. 92.6%
of the variation in biomass could be explained by Ratio1 and the RMSE was 32.57. Therefore,
Ratio1 was taken as the microwave sensitive index β, and the regression model between biomass
and Ratio1 was taken as the microwave-alone retrieval model, namely fðβÞ in Eq. (4).

Biomass ¼ 11.512 × Ratio1ð−0.609Þ: (6)

From Figs. 4 and 5, we can see that the influence of soil moisture content on the relationship
between Ratio1 (or the other combinations) and biomass was obvious for the cases of relatively
low biomass, and was greatly weakened in the scenario of relatively high biomass. Therefore,
considering the relationship between biomass and Ratio1(or MSAVI) and the degree of the
impacts of the soil moisture content on Ratio1(or MSAVI), it was significant to determine
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the contributions of optical and microwave data in the synergistic retrieval model under different
vegetation coverage conditions.

3.2.4 Calculating the weights of optical and microwave data

In the synergistic retrieval model, the contributions of optical and microwave data depended on
their assigned weights [a and b in Eq. (4)]. Under different vegetation coverage conditions, the
sensitivities of optical and microwave data to the variation of biomass were also different.
Therefore, in order to estimate the contributions of optical and microwave data under different
vegetation densities, the relationship analysis between the sensitivities of optical and microwave
key factors (e.g., MSAVI and Ratio1) and biomass was essential. The optical and microwave key
factors first needed to be normalized so as to unify their metrics. The normalization processing
can be carried out as

yi ¼
xi − xmin

xmax − xmin

; (7)

where xi was the value of the optical (or microwave) key factor under the i’th vegetation con-
dition; xmin and xmax were the minimum and maximum of the optical (or microwave) key factor,
respectively; yi was the corresponding normalized value.

Fig. 4 Sensitivity analysis between biomass and (a) the full polarization backscattering of C-band,
(b) the full polarization backscattering of L-band.
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Then the sensitivity of the optical (or microwave) key factor can be calculated as follows:

Sensitivity ¼ jyiþ1 − yij; (8)

where yi was the normalized value of the optical (or microwave) key factor under the i’th veg-
etation condition.

Relationship analysis between MSAVI sensitivity and biomass. According to the
previous analysis in Sec. 3.2.2, MSAVI was chosen as the optical key factor, namely Index in
Eq. (4). Based on the optical simulated database, the relationship between the sensitivity of
MSAVI and the biomass was analyzed (Fig. 6).

Figure 6 showed how the sensitivity of MSAVI changed with the biomass. From Fig. 6, we
can see that the sensitivity of MSAVI rose in the first stage, acquired the maximum of 0.15, and
then decreased dramatically with the increase of the biomass. The sensitivity of MSAVI was less
than 0.02 at the biomass of approximately 200 Mg∕ha. When the biomass was more than
400 Mg∕ha, MSAVI had lost the ability to respond to the change of biomass. In other
words, when the vegetation density increased to a certain level, optical vegetation indices
would become saturated.

Relationship analysis between Ratio1 sensitivity and biomass. According to the
above analysis in Sec. 3.2.3, the selected microwave key factor in the synergistic retrieval model
was Ratio1. Using the simulated microwave backscattering data, the relationship between the
sensitivity of Ratio1 and the biomass was analyzed (Fig. 7).

Fig. 5 Sensitivity analysis between biomass and polarization ratios.

Fig. 6 Relationship between the sensitivity of MSAVI and biomass.
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Figure 7 illustrated how the sensitivity of Ratio1 changed with the biomass. With the increase
of biomass, the sensitivity of Ratio1 first increased, achieved its maximum of 0.07, and then
decreased. Compared to the sensitivity of MSAVI (Fig. 6), the overall sensitivity of Ratio1
was much lower.

Based on the analysis above, the optical vegetation index (MSAVI) was found to have a
higher sensitivity to biomass than the microwave index (Ratio1), but the saturation of the optical
data was also obvious. When the biomass was less than 100 Mg∕ha, MSAVI had a higher sen-
sitive to the change of biomass than Ratio1 and played a more important role in the synergistic
model. When the value of biomass exceeded 100 Mg∕ha, the sensitivity of Ratio1 was higher
than that of MSAVI. To determine the weights of optical and microwave data under different
vegetation conditions, the ratio of the MSAVI sensitivity to the Ratio1 sensitivity was selected
and calculated.

Calculating the weight. Based on the relationship analysis between the sensitivity of opti-
cal (or microwave) key factor and biomass, the weights of optical and microwave data can be
calculated as

OWi ¼ OSi∕ðOSi þMSiÞ; (9)

OWi þMWi ¼ 1; (10)

where OWi was the weight of optical data under the i’th biomass condition, and MWi was the
corresponding weight of microwave data; OSi and MSi were the sensitivity of MSAVI and the

Fig. 7 Relationship between the sensitivity of Ratio1 backscattering and biomass.

Fig. 8 Statistical relationship between the weight of the optical data and MSAVI.
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sensitivity of Ratio1, respectively, and the equation of the sensitivity has been introduced
in Eq. (8).

In order to obtain the mathematical expression of the weight of optical data, the relationship
between the weight of optical data and corresponding MSAVI under different biomass condi-
tions was acquired using statistic regression analysis (Fig. 8). When MSAVI and Ratio1 were
chosen as the key optical and microwave factors, respectively, the weights of the optical and
microwave data could be shown as

OWðxiÞ ¼ ð−4.0059Þ × x2i þ 2.565 × xi þ 0.3621; (11)

MWðxiÞ ¼ 1 −OWðxiÞ; (12)

where xi was the value of MSAVI under the i’th biomass condition; OWðxiÞ and MWðxiÞ were
the corresponding weights of optical and microwave data, respectively.

4 Biomass Estimation and Precision Verification

With TM and RADARSAT-2 images, biomass was estimated using the previously developed
synergistic retrieval model. The biomass map in the study area was shown in Fig. 9. The
dark areas in the figure were rivers areas that have been masked out in the analysis. The maxi-
mum forest biomass was 163.82 Mg∕ha and was mainly distributed in the northeast of the study
area. The minimum forest biomass was 22.36 Mg∕ha and was mainly distributed in the
northwestern study area. In most of the study area, the biomass was in the range from 65
to 95 Mg∕ha.

To investigate the performance of the proposed synergistic retrieval model, the estimated
results of biomass from the synergistic model were compared with the field measurements.
Furthermore, the estimated results from the synergistic model were also compared with that
from the optical-alone retrieval model [Eq. (5)] and the microwave-alone retrieval model
[Eq. (6)]. The comparison results were shown in Fig. 10. Table 6 was the comparison results
of the error analysis. The retrieval accuracy (M) and RMSE could be calculated as follows:

Fig. 9 The retrieval image of biomass with the proposed synergistic model.
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M ¼
�
1 −

P
n
i¼1ðjYi − Xij∕YiÞ

n

�
× 100%; (13)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðYi − XiÞ2
s

; (14)

where Xi and Yi were the model-predicted biomass and the field biomass on the i’th plot, respec-
tively; n was the number of plots.

The performance of the synergistic retrieval model (M ¼ 85.90%, RMSE ¼ 14.91) was
found to be obviously better than that of the optical-alone model (M ¼ 81.10%, RMSE ¼
19.99) or the microwave-alone model (M ¼ 70.25%, RMSE ¼ 30.58). These results indicated
that the synergistic use of the optical and microwave data could combine their respective advan-
tages in estimating the forest biomass. The complementary effects of the optical and microwave
data could contribute to a higher predicted accuracy for forest biomass estimation.

5 Conclusions and Future Work

By unifying the input parameters of the PROSAIL and MIMICS models, joint simulations of
optical bidirectional reflectance and microwave backscattering of the same broad-leaved forest
canopy and underlying ground surface were performed. Based on the simulated database, a syn-
ergistic retrieval model was built to predict the forest biomass in the study area. The field mea-
surements were used to test the validity of this synergistic use of passive optical and active
microwave remote sensing. The conclusions were summarized below.

(1) The comparisons between the optical-alone (or microwave-alone) retrieval model and
the synergistic retrieval model demonstrated that the model proposed was more effective
for forest biomass estimation. The synergistic use of passive optical and active micro-
wave remote sensing showed considerable potential in estimating the forest biomass.

Fig. 10 Comparisons of biomass retrieval results from the synergistic, optical-alone, and micro-
wave-alone models.

Table 6 The estimation precision of the synergistic, the optical-alone and the microwave-alone
models.

Model M (%) RMSE

Synergy 85.90 14.91

Optical-alone 81.10 19.99

Microwave-alone 70.25 30.58
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(2) Based on the proposed joint radiative transfer models with the unified input parameters,
joint simulations of optical bidirectional reflectance and microwave backscattering pro-
vided a basic-ideal database for analyzing the sensitivity of key factors to the change of
forest biomass in optical and microwave bands, and developing the corresponding opti-
cal and microwave synergistic model.

(3) According to the relationship analysis between the sensitivity of optical (or microwave)
key factor and biomass, the weight of optical (or microwave) data in the synergistic
retrieval model was determined, which revealed the synergistic mechanism between
optical and microwave data.

The effects of curved leaves and multiple scattering within canopies in the MIMICS model
were not considered at present, which may reduce the vegetation information provided by micro-
wave data in the synergistic retrieval. Further research work will be focused on how to solve the
second-order solution of the microwave radiative transfer model in order to improve the pre-
cision of backscattering coefficients simulating.
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