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ABSTRACT 

Using data-mining technology, this paper established a new 
method, named the Integrated Surface Drought Index (ISDI). 
ISDI integrates traditional meteorological data, remotely 
sensed indices, and biophysical data, and attempt to describe 
drought from a more comprehensive perspective. The 
evaluation results indicated that the construction models for 
three phases of growth season have very high regression 
accuracy. The drought condition can be predicted using the 
independent variables. The practical application of ISDI in 
mid-eastern china also demonstrated that ISDI has good 
application accuracy in mid-eastern China. ISDI results 
were corresponding to the disaster observation records of 
agro-meteorological sites. It can be potentially extended to 
nationwide near real time drought monitoring.  

Index Terms— Drought, ISDI, remote sensing, data 
mining

1. INTRODUCTION 

Drought affects a large number of people and cause more 
losses to society compared to other natural disasters[1]. 
Researches on drought receive more and more attention 
from scientists since 20th century. China is a drought 
disaster-prone country. The frequent occurrence of drought 
poses an increasingly severe threat to the Chinese 
agricultural production[2].  

Since the beginning of 20th century, a lot of drought 
indices have been developed for monitoring the occurrence 
and variation of drought. The first developed indices are 
meteorological drought indices such as Standard 
Precipitation Index (SPI) and Palmer Drought Severity 
Index (PDSI). Most of the early established meteorological 
drought indices are calculated from station-based 

measurements of temperature and precipitation. The SPI 
was one of the drought indices been widely used worldwide, 
which is designed to be a spatially invariant indicator 
(spatially and temporally comparable) only based on in-situ 
precipitation data[3]. The statistical probability of 
precipitation compared to historical average level was 
calculated and standardized to get the final SPI values. The 
PDSI is calculated using historical temperature and 
precipitation, and information of the available water content 
of the soil based on a soil moisture/water balance 
equation[4]. Although the meteorological drought indices 
can get more accurate and spatially and temporally 
comparable drought conditions, their utilization is enslaved 
to the density and distribution of the station network[5]. 
This type of indices also can not reflect the vegetation 
condition induced by the water deficit.  

Satellite-based drought indices have obvious 
advantages compared to station-based meteorological 
drought indices in spatial resolution. More and more indices 
are established since the appearance of remote sensing 
technology. The Normalized Difference Vegetation Index 
(NDVI) is one of the early developed and most widely used 
satellite-based indices[6]. NDVI is the best indicator of the 
vegetation growth condition and the vegetation coverage, 
which has been widely used to estimate vegetation biomass 
and assess the environmental condition[7]. Based on NDVI, 
Vegetation Condition Index (VCI) has proved to be a useful 
means for detecting the vegetation condition deterioration 
caused by drought[8-9]. Besides, Percent of Average 
Seasonal Greenness (PASG) is another typical drought 
index. PASG provides a measure for vegetation conditions 
by calculating the percentage between the greenness in the 
specific period and the average greenness over the same 
period[5].  

Land surface temperature (LST) is also closely related 
with drought. Temperature Condition Index (TCI) is 
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developed to monitor the drought through land surface 
temperature anomalies based on remote sensed LST 
data[10]. In addition to temperature increases caused by 
water deficit, the vegetation index decreases along with the 
vegetation growth status suppressed[11]. Therefore, the 
ratios of vegetation index and LST such as the 
Temperature/Vegetation Index (TVI) and the Vegetation 
Supply Water Index (VSWI) have been successfully used to 
detect drought[12].  

Although the remote sensed drought indices can 
provide near real time drought condition detection over the 
global at a relatively high spatial resolution, it is often 
difficult to distinguish drought-related vegetation stress 
from vegetation changes caused by other factors without 
additional information[5]. Therefore, no single drought 
index can be used to adequately monitor the onset of 
drought and measure drought intensity, duration and 
impact[13]. Vegetation Drought Response Index (VegDRI) 
was developed based on data mining technology namely 
decision-making regression tree model[5]. VegDRI can 
integrated both station based meteorological drought indices, 
satellite-based regional drought indices, and biophysical 
data. The accuracy of VegDRI has been validated by the 
field observation data, and this index has been used to 
national wide drought monitoring in America.  

The objective of this paper is to establish a new 
integrated drought monitoring index name Integrated 
Surface Drought Index (ISDI) based on data mining 
technology. ISDI integrates land surface water and thermal 
environment condition, vegetation growth condition and 
biophysical information. Mid-eastern china was selected as 
pilot study area and ISDI drought monitoring results in this 
area from 2000-2009 was evaluated.  

2. MATERIAL AND DATA 

The meteorological data namely daily precipitation and 
temperature data during 50 years (1960–2009) from 130 
weather stations in mid-eastern china are derived from the 
China Meteorological Data Sharing Service System 
(http://cdc.cma.gov.cn/). High quality, consistent and well-
calibrated Moderate Resolution Imaging Spectroradiometer 
data (MODIS) provides a means for quantifying land 
surface characteristics such as NDVI, LST, and land cover 
type. This remote sensed data is necessary for near real time 
regional drought detection. In our investigation, the 16-day 
interval MODIS NDVI products (MOD13A2, 1km 1km) 
were used to monitor vegetation dynamics. The LST data is 
derived from 8-day interval MODIS products (MOD11A2, 
1km 1km). The NDVI and LST products are both from 
2000 to 2009. MODIS land cover data (MOD12Q2, 1km
1km) for 2008 was used to distinguish the drought 
characteristic differences in various land cover types. 
Besides, the biophysical data inputs include ecological 
zoning data (Eco-region), Available Water-holding 

Capacity (AWC) data, and the irrigation water management 
distribution data and Digital Elevation Data (DEM). The 
Eco-region data is obtained from a Chinese eco-
geographical zoning map[14]. AWC is provided by the 
International Geosphere-Biosphere Programme (IGBP). 
DEM data is derived from the "China Western Environment 
and Ecology Science Data Center" 
(http://westdc.westgis.ac.cn) with a spatial resolution of 1 
km.  

3. METHODOLOGY 

3.1. ISDI input parameters 

The 16-day interval self-calibrated PDSI and multi-scale 
SPI (9-month and 12-month) based on observed 
meteorological data at sites were calculated. Rigorous pre-
treatment has been applied to the meteorological data before 
they are used to build SPI and PDSI. SPI provides a 
measure of precipitation deficit compared to historical 
precipitation record. PDSI accounts for the effect of both 
precipitation and temperature and their combine effect on 
soil water available to drought conditions. PDSI was 
selected as the dependent variable in ISDI model.  

Drought indices derived from remote sensed data 
include NDVI, VCI, PASG, and Start of Season Anomaly 
(SOSA). VCI, PASG, and SOSA indices are established 
using time series NDVI[15-16]. The VSWI, which 
integrated vegetation and temperature information, was 
selected to reflect the vegetation, surface thermal and water 
content conditions. Besides, all the biophysical data 
mentioned in section 2 are selected as inputs to 
comprehensively describe drought characteristics in 
different regions. Through comparison of the remote sensed 
drought indices[16], 8 independent variables namely VSWI, 
SOSA, SPI, elevation, Landcover, AWC, GIAM, 
Eco_region were determined as a combination inputs of 
ISDI.  

3.2 Data mining technology 

A commercial Supervised Classification and Regression-
Tree (CART) algorithm called cubist 2.07 was used in this 
investigation to analyze historical drought indices and 
biophysical variables and build the three seasonal, rule-
based, linear regression models. This approach can handle a 
variety of data types (e.g., discrete and continuous), so it 
suitable for constructing ISDI which integrates site-scale 
meteorological drought indices and regional scale remote 
sensed data.  

3.3 ISDI construction method 

For the same vegetation type, the vulnerability under 
drought condition is significant different in different phases 
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of growth season. Therefore, we divide the growing season 
into three seasonal phases namely spring, summer, and fall 
and ISDI was constructed for the three phases separately. 
The multi-scale SPI and self-calibrated PDSI data for 130 
meteorological stations were collected from 2000 to 2009. 
Spatial continuous variables were extracted from the 9km
9km pixel window centered on each station location, and 
the average value from the window was calculated for the 
continuous variables and the dominant (or majority) class 
for the categorical variables. All the extracted variable for 
three phases were sequentially ordered to build the training 
dataset and imported into the Cubist 2.07. Then, a series of 
three seasonal, rule-based and piecewise linear regression 
rules were generated and they were used to calculate 
drought condition pixel by pixel from 2000 through 2009 in 
the study area.  

4. RESULTS 

4.1 Regression accuracy of ISDI 

The scatter plots of IDSI consruction results using 
regression and the decision tree model based on all samples 
of the dataset are shown in Fig. 1.  
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Figure 1. Scatter plots for plan 7 predicted values and real values 
The average error, relative error, and correlation 

coefficients were also calculated to evaluate the accuracy of 
ISDI. It should be noted that the relative error is the ratio of 
the average error magnitude to the error magnitude that 
would result from always predicting the mean value. The 
smaller the values indicate that the higher accuracy of the 
models and the values less than 1 proved the models are 
useful. We found that the models for three phases have very 
high prediction accuracy. The relative errors for spring and 
autumn phases are higher than summer phase, reached 0.23 

and 0.22 respectively. The relative error for summer phase 
is 0.42, also has high precision. The correlation coefficients 
for the three phases are reached 0.94, 0.87, and 0.95 
respectively. All the evaluation results proved that the 
drought condition can be predicted using the independent 
variarbles.  

4.2 Monitoring results of ISDI 

We calculated the spatial ISDI drought monitoring results 
with 16-day intervals in the period 2000-2009 for mid-
eastern china. 2009 Was chosen as the typical dry year to 
evaluate the regional scale drought monitored results. This 
is because the northern China experienced severe drought in 
early 2009. Shaanxi, Hebei, Inner Mongolia and other 
places in northern china were lack of precipitation for a long 
time and caused widespread drought in 2009. Some places 
developed to autumn drought in this year 
(http://news.163.com/special/000135UP/090205ganhan.htm
l#7). The ISDI results for DOY 2009193 (Jul 12 to Jul 28, 
2009) are shown in Figure 2. The disaster observations of 
agro-meteorological stations (http://cdc.cma.gov.cn/) in 
mid-Jul 2009 were used to test the accuracy of ISDI results 
(Table 1).  

Figure 2. ISDI monitored results for 2009193 (Jul 12 to Jul 28, 
2009)

Figure 2 indicated that the mid-eastern china 
experienced various levels of drought during mid-Jul 2009. 
The northern china, especially Shanxi, Shaanxi, and central 
Inner Mongolia experienced serious drought. This is 
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consistent with the reported results 
(http://news.163.com/special/000135UP/090205ganhan.htm
l#7). For local scales (county region), ISDI results were 
corresponding to the disaster observations of four 
representative agro-meteorological sites, namely Xilinhot, 
Zhangbei, Linfen and Taian. Zhangbei, Linfen and Xilinhot 
suffered a moderate drought during mid-Jul 2009 according 
to Table 1, but Jinan was not affected by drought. 
According to ISDI, most area of Zhangbei, Linfen, and 
Xilinhot also experienced mild to severe drought during the 
same time, but most area of Jinan were in normal condition.  
Table 1 Comparison of the drought field observations and the ISDI 

monitoring results in 2006 

Site Name Intensity Affected area (ha) Observed percentage

Xilinhot Mid >66666 90-100% 
Zhangbei Mid >66666 70-79% 

Linfen Mid 13333 30-39% 
Taian Normal - - 

Mid: the dry soil depth is 3-6cm. The leaves of crop wilt during the 
day because of drought persistence.  
Affected Area (ha): is crop area affected by drought.  
Percentage: is the ratio of drought affected crop area and sown 
area in the county where the agro-meteorological site located in. 
The values are estimated results through observation.  

5. CONCLUSIONS 

In our study, a new drought index named ISDI was 
established based on data-mining technology. This index 
integrates traditional meteorological data, remotely sensed 
indices, and biophysical data, and attempt to describe 
drought from a more comprehensive perspective. Chosen 
PDSI as the dependent variable and 8 data as independent 
variables, ISDI not only have good mechanism, but also 
integrate many features of drought. Correlation coefficient 
analysis proved that the regression accuracy is very high 
and the drought condition can be accurately portrayed using 
the independent variables.  

By using ISDI model for drought monitoring in mid-
eastern china during 2000-2009, we conclude that ISDI has 
good accuracy for both large scale and local scale drought 
monitoring. ISDI results were corresponding to the disaster 
observations of agro-meteorological sites. This 
demonstrates that ISDI is suitable for near real time drought 
monitoring in mid-eastern china and it has potential 
applications all over the country.  
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