
1562 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

Multistream STGAN: A Spatiotemporal Image
Fusion Model With Improved Temporal

Transferability
Fangzheng Lyu , Zijun Yang , Chunyuan Diao , and Shaowen Wang

Abstract—Spatiotemporal satellite image fusion aims to generate
remote sensing images satisfying both high spatial and temporal
resolution by integrating different satellite imagery datasets with
distinct spatial and temporal resolutions. Such fusion technique is
crucial for numerous applications that require frequent monitoring
at fine spatial and temporal scales spanning agriculture, environ-
ment, natural resources, and disaster management. However, ex-
isting fusion models have difficulty accommodating abrupt spatial
changes in land cover among images and dealing with temporally
distant image data. This article proposes a novel multistream spa-
tiotemporal fusion generative adversarial network (STGAN) model
for spatiotemporal satellite image fusion that can produce accurate
fused images and accommodate substantial temporal differences
between the input images. The STGAN employs a conditional gen-
erative adversarial network architecture with a multistream input
design to better learn temporal features. The generator of STGAN
comprises convolutional blocks, a spatial transformer module, a
channel attention network, and a U-net module designed to better
capture spatial and temporal features from the multiresolution
input images. Comprehensive evaluations of the proposed STGAN
model have been performed on the Coleambally Irrigation Area
and Lower Gwydir Catchment datasets, using both visual inspec-
tion and spatial and spectral metrics, including root mean square
error, relative dimensionless global error synthesis, spectral angle
mapping, structural similarity index measure, and local binary
pattern. The experiments show that the proposed STGAN model
consistently outperforms existing benchmark models and is capa-
ble of generating high-quality fused remote sensing data product
of high spatial and temporal resolution.
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I. INTRODUCTION

S PATIOTEMPORAL satellite image fusion, the process of
generating remote sensing images with both high spatial

and temporal resolutions, has gained significant attention in re-
cent years. Although an increasing number of satellite missions
have been launched, most satellite datasets are still faced with
the tradeoff of resolutions, and it is still challenging to provide
imagery with both high spatial and temporal resolutions [1].
Spatiotemporal image fusion integrates different remote sensing
datasets (i.e., coarse and fine images) with distinct characteristics
in their spatial and temporal resolutions. The coarse images are
with low spatial resolution but a higher temporal frequency,
such as the MODIS data, while the fine images are featured
with high spatial resolution but lower temporal frequency, such
as the Landsat images. The resulting fusion images with high
spatiotemporal resolutions can significantly enhance the ap-
plication potential of remote sensing data, benefiting a vari-
ety of applications, including agriculture, environment, natural
resources, disaster managements, etc. [2], [3], [4]. Therefore,
spatiotemporal image fusion is a feasible solution to leveraging
the diverse collection of satellite images and providing fused
satellite datasets with high spatiotemporal resolutions.

Existing developed fusion models can be mainly categorized
into four types, namely weight-function-based, unmixing-based,
Bayesian-based, and learning-based models. The spatial and
temporal adaptive reflectance fusion model represents a classic
example of weight-function-based fusion models, which predict
reflectance of fine pixels with information from neighboring
coarse pixels integrated by a weight function [5]. Pixels with
lower spectral difference, temporal difference, and spatial dis-
tance are normally assigned with larger weights [6], [7], [8].
Unmixing-based methods first define endmembers from the
fine-resolution images, and unmix the low-resolution image with
those endmembers in order to predict the reflectance values in
the fusion images [9]. Bayesian-based methods are constructed
based on the maximum a posterior probability estimation. The
predicted image is generated through the process of maximizing
the conditional probability given the existing fine and coarse
images. With the unprecedented advances in machine learning
and deep learning, learning-based models have increasingly
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gained more attention in the field of spatiotemporal image fusion
[10], [11]. Most traditional methods hold the assumption that
land cover types remain mostly unchanged, and their ability to
accommodate abrupt changes among images can be limited. In
contrast, learning-based models can adapt to complex, nonlinear
relationships and sudden changes in data patterns, which pro-
vides a solution for spatiotemporal image fusion with dynamic
and heterogeneous landscapes.

Deep learning has opened new opportunities for spatiotem-
poral image fusion. Fusion models based on deep-learning tech-
niques are able to learn complex relationships from large vol-
umes of remote sensing data. Recent advances in deep-learning-
based spatiotemporal image fusion models have demonstrated
promising performance in providing high-quality fusion im-
agery with enhanced accuracy. Among various deep-learning
modeling architectures, convolutional neural network (CNN)
is the most frequently employed deep-learning architecture for
spatiotemporal image fusion. For spatiotemporal image fusion,
the convolutional operations of CNN allow the models to extract
and map spatial features across different sources of images,
facilitating accurate construction of the spatial details. Through
the design of CNN-based model structures, the relationships
between the spatial and textual features in the low- and high-
resolution images can be established, enhancing the model
accuracy [12], [13], [14]. The spatiotemporal satellite image
fusion using deep CNN is the first CNN-based spatiotempo-
ral fusion model, which leverages the super-resolution CNN
model to extract fine-scale spatial features and reconstruct the
high-resolution images [13]. Recently developed CNN-based
models introduce more sophisticated CNN structures in order
to extract more representative features and accommodate the
discrepancies in spatial, spectral, and temporal aspects between
the fine and coarse images [14], [15].

Apart from CNN, generative adversarial network (GAN)
models have demonstrated better performances in many remote
sensing applications, such as object detection and image clas-
sification. GAN models consist of a generator, which generates
output data samples, and a discriminator for evaluating them
for authenticity by comparing the generated and reference data.
Since GAN has the capacity to produce high-resolution images
that share similar statistical distributions with the real satel-
lite images, GAN-based have great potential in learning and
generating diverse spatial/landscape features when substantial
resolution discrepancy exists. Moreover, GAN models can be
further enhanced through variants, such as conditional GAN
that allows more directed and controlled data generation [16].
Representative GAN-based fusion model includes spatiotem-
poral fusion method using a GAN [17] which incorporates an
image fusion GAN with superior performance in image super
resolution. More recently, multilevel feature fusion with GAN
incorporates multilevel CNN as the generator in an effort to
accommodate the significant resolution difference between low-
and high-resolution images [18]. In addition, GAN-based mod-
els have demonstrated their potential in lessening the require-
ment of input data. Compared to traditional models that may
require two image pairs (i.e., one coarse and one fine image

acquired on the same date), newly proposed GAN-based fusion
models may require only one image pair [16], [19]. For instance,
the GAN-based spatiotemporal fusion model (GANSTFM) in-
corporates conditional GAN to reduce the number of model
inputs, allowing more flexible deployment of the fusion model
[16]. More recently, GAN spatiotemporal fusion model based on
multiscale and convolutional block attention module [20] and
high-precision remote sensing spatiotemporal fusion method
(HPLTS-GAN) [21] both integrate multiscale feature extraction
to further enhance model performance with limited one-pair
input imagery.

Despite the recent success of deep learning in spatiotem-
poral image fusion, temporal transferability remains a critical
challenge in spatiotemporal fusion. Existing models often re-
quire temporally adjacent training samples and need retrain-
ing for different temporal periods to obtain accurate fusion
results, which limits their generalizability. [18], [22]. The drastic
changes that may happen across the temporal dimension pose
great challenges to the accurate prediction of reflectance change.
Moreover, land cover changes over time may alter the landscape
in the images, which brings difficulties for the fusion models
to retrieve the spatial structures from the low-resolution images
[16]. While selecting temporally close images helps improve
model performance, it is not always feasible to acquire images
that are acquired near the prediction date. Therefore, a novel
modeling structure that can accommodate substantial temporal
changes and alleviate the demand for temporally close images
is highly desired. The objective of this article is to devise a mul-
tistream spatiotemporal fusion GAN (STGAN) model for spa-
tiotemporal satellite image fusion that can accommodate drastic
temporal difference for improved temporal transferability. The
proposed STGAN model aims to provide accurate prediction of
fusion images even without temporally close images, achieving:
1) enhanced temporal transferability that allows the trained
model to be applied across different temporal periods without
retraining, and 2) a unique random sampling strategy during
training that incorporates samples with varying temporal gaps.
This approach enables the model to learn and accommodate
diverse temporal patterns, making it more robust to different
temporal gaps in the input data without requiring temporally
close image pairs. To that end, STGAN employs a conditional
GAN modeling structure that incorporates multistream input,
which allows the model to better learn the temporal changes
in surface reflectance from the high-temporal-resolution low-
spatial-resolution images. In the meantime, the spatial features
could be better retrieved on condition of the image of high
spatial resolution, which has great potential in predicting land
cover changes over time. By integrating spatial transformer
and channel attention modules, STGAN can better capture and
emphasize both spatial and temporal features that are important
for satellite image fusion, leading to superior fusion results.
Through a unique training strategy based on randomly selected
reference images, our model is able to effectively accommodate
significant temporal gaps, facilitating accurate predictions even
when the image pair is temporally distant from the prediction
date. Through the unique combination of conditional GAN with
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multistream input, spatial transformer, channel attention, U-net,
and random training strategy, the proposed STGAN structure
possesses enhanced capabilities in establishing the mapping
relationships between the low- and high-resolution images, ac-
commodating the temporal changes in both spectral reflectance
and spatial structures.

II. DATA AND MATERIAL

Two study sites are selected in this article, namely Coleam-
bally Irrigation Area (CIA) and Lower Gwydir Catchment
(LGC) with open-source satellite datasets [23]. Located in south-
ern New South Wales, Australia, the CIA site encompasses an
agricultural production area with a rice-based irrigation system.
The major land cover type in the CIA site is irrigated agriculture,
which forms a heterogeneous landscape by a great number of
small crop fields with their rapid-changing temporal phenolog-
ical dynamics during the growing season (Fig. S1). In addi-
tion, dryland agriculture and woodlands surround the irrigated
agriculture system, with less variable temporal dynamics. Thus,
the CIA site is especially appropriate for testing the ability of
the fusion models to capture temporal phenological changes.
The satellite dataset for the CIA site includes 17 image pairs
(Table SI), with the acquisition time ranging from October 2001
to May 2002, corresponding to the summer growing season.
However, the temporal gaps between available image pairs vary
substantially in the CIA dataset. For instance, temporally proxi-
mate pairs may be acquired within a 9-day interval (image pairs
available on 8th October 2001 and 17th October 2001), while
distant pairs may span over 30 days (12th January–13th February
2022). This inherent variability in temporal sampling requires
robust temporal transferability in fusion models. Each image
pair in the dataset consists of a Landsat-7 ETM+ image with a
30-m spatial resolution and a MODIS MOD09GA image with
a 250-m spatial resolution. Both Landsat and MODIS images
are resampled to a 25-m spatial resolution, resulting in an image
size of 1720 by 2040.

The LGC site is located in northern New South Wales, Aus-
tralia. The LGC site encompasses a more natural landscape
with a mixture of agriculture and woodlands. Due to a sig-
nificant flood occurrence in late 2004, the LGC site is known
for undergoing abrupt land cover changes before and after the
flooding period with excessive wetness and inundated vegetation
(Fig. S2). The LGC dataset consists of a total of 14 image
pairs (Table SI), acquired between April 2004 and April 2005.
Image pairs for the LGC site consist of 30-m Landsat-5 TM and
250-m MODIS MOD09GA products, with both products being
resampled to a 25-m resolution. The image size for the LGC site
is 3200 by 2720. For both CIA and LGC datasets, the satellite
images include six bands, namely blue, green, red, near infrared
(NIR), shortwave infrared 1 (SWIR1), and SWIR2.

III. METHOD

A. Preprocessing

An approach utilizing multiple data streams has been adopted
in this article. The prediction of high-resolution images at the

target date involves three input streams for generating coarse
and fine feature maps as the input to the GAN-based deep-
learning model: 1) low-resolution image at the target date,
2) low-resolution image from a randomly selected reference
date within the dataset, and 3) high-resolution image from the
selected reference date (see Fig. 1). These data streams are
integrated to generate both fine and coarse feature maps, which
serve as input for the deep learning model (as illustrated in
Fig. 1).

The fine feature map and coarse feature map represent in-
formation toward spatial and temporal aspects. The fine fea-
ture map comprises high-resolution images and the difference
between these high-resolution images and their low-resolution
correspondent on the reference date. High-resolution images
from the reference date capture spatial details of the landscape,
whereas the contrast between high- and low-resolution images
on the reference date conveys disparities in spatial characteristics
between the two sets of images. On the other hand, the coarse
feature map encompasses low-resolution images from the target
date and the contrast between the low-resolution images on the
target date and those from the reference date. The low-resolution
image on the target date provides information on the temporal
side, indicating the expected state of the landscape at the target
time. The difference between the low-resolution image on the
target date and the low-resolution image on the reference date
represents how the landscape changes over time at a coarse
resolution level. Both the fine and coarse feature maps are
subsequently input into a GAN-based deep learning model to
generate high-resolution images for the target date.

The STGAN model’s temporal transferability is achieved
through two critical design choices: randomized sampling in
reference selection and a multistream input structure. First, the
reference image is sampled randomly rather than sequentially,
allowing the model to learn from a wide range of tempo-
ral intervals without dependence on specific sequences. This
randomized sampling helps the model to generalize across
temporally distant samples, reducing overfitting to short-term
temporal patterns. Additionally, the multistream input design
enables the model to capture spatial and temporal differences
between the target time and randomly selected reference times,
which enhances its adaptability to varied temporal intervals.
The multistream input design provides the model with structural
information under various levels of temporal changes, making
STGAN effective in handling both short and long temporal gaps.
Different from existing models, STGAN model does not rely
on temporally close training samples and can adapt to distant
intervals, achieving enhanced temporal transferability.

The input dataset is initially divided into training, testing, and
validation datasets for the proposed deep-learning model. The
training and testing datasets are employed in the construction of
the machine-learning model, and the validation dataset serves
exclusively for result validation. For each image within the
training and testing datasets, 50 high-resolution tiles of size 256
pixels ∗ 256 pixels, representing an area of 7.68 km × 7.68 km,
are randomly selected as the output. Each image’s acquisition
date is deemed as the target date, since the model aims to predict
the high-resolution tiles. Their low-resolution correspondents of
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Fig. 1. Multistream Input of the proposed model.

the target date are then used as input, along with 256 pixels ×
256 pixels high- and low-resolution tiles located at the same
position of the images acquired on a randomly chosen reference
date which is different from the target date.

Of the 50 tiles selected from each image, 10 are allocated
for testing, while the remaining 40 are employed to train the
deep-learning model. For images within the validation dataset,
50 high- and low-resolution tiles are extracted from the images
of the validation date and a randomly selected reference date,
respectively, following a similar procedure used to generate the
training and testing datasets. The randomly selected reference
dates ensure that the model encounters various temporal length
between the target and reference dates, enhancing the model’s
capability to predict drastic temporal changes.

As both the CIA and LGC datasets possess six bands repre-
senting blue, green, red, near-infrared, short-wave infrared 1, and
short-wave infrared 2, each fine and coarse feature map includes
12 bands. In the context of 17 image pairs within the CIA
dataset and 14 image pairs within the LGC dataset, 850 images
and 700 image tiles will be retrieved CIA and LGC dataset,
respectively.

B. Model Structure

1) GAN: In our proposed model, a GAN-based model struc-
ture is utilized. This model is based on the deep generative mod-
els designed by Goodfellow et al. [24], which are specifically
developed to address the generative modeling problem. Unlike
traditional deep-learning models, the GAN model employs two
neural networks, namely the generator (G) and discriminator
(D), which compete with each other in a zero-sum game format.
The generator is responsible for generating new data samples
that are intended to resemble the target dataset, which in our
study is represented by the high-resolution images. The dis-
criminator, on the other hand, evaluates the authenticity of the
generated data samples to determine whether they belong to the

target dataset [24]. The GAN model represents a zero-sum game,
with objective function as

minDminGV (D,G) = Ex [ln (D (x)]

+ Ez [ln (1−D (G (x)))] (1)

where X is the random variable associated with the input data,
while Z represents the random variable associated with the
random noise. The generator (D) and discriminator (G) are
two players engaged in a minimax game with a value function
denoted as V(D, G).

In the field of computer vision, GAN model has been exten-
sively used for various applications, such as object detection
[25], [26], image classification [27], image super-resolution
[28], [29], and image-to-image translation [30]. Furthermore,
this model structure has also been adopted by remote sensing
scientists to address challenges in remote sensing image classi-
fication [31], hyperspectral image classification [32], [33], and
spatiotemporal image fusion [18].

In our proposed study, a GAN model with multistream input is
adopted to achieve spatiotemporal image fusion. The proposed
structure of the two major components, namely the generator
and discriminator, will be illustrated in the following section.

2) Generator: The generator component of our proposed
model structure comprises of four major components, namely,
1) convolutional block, 2) spatial transformer module, 3) channel
attention network, and 4) U-net module, as depicted in Fig. 2.
The first component, the convolutional block, is responsible for
extracting the spatial and spectral features of the coarse feature
map and the fine feature map. Initially, the coarse and fine
input streams are fed separately into the convolutional layer.
The convolutional layer comprises a sequence of components,
including a batch normalization layer, a Leaky Rectified Linear
Unit (Leaky ReLU), a two-dimensional convolutional block, a
subsequent batch normalization layer, and another Leaky ReLU.
The output feature maps from both streams are then added to
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Fig. 2. Generator structure.

generate the new fine feature map to include both spatial details
and temporal information generated from coarse feature map.
This process is repeated thrice, following which the fine and
coarse feature maps are extracted from the multi-stream inputs
and fed into the spatial transformer module, separately.

The spatial transformer network is an insertable deep-learning
module that helps to increase spatial invariance against various
spatial transformations, like translation, scaling, etc. [34]. It has
been widely used in object detection [35], image classification
[36], image super-resolution [37], and other applications. It is
considered a key component in our model, playing a critical
role in enhancing model performance by effectively augmenting
the spatial features of both coarse and fine feature maps. The
spatial transformer mechanism is split into three components—
localization net, parameterized sampling grid, and differentiable
image sampling involved in the spatial transformer module, as
shown in Fig. 2. The first localization network takes the input
feature map, and through a number of hidden layers, outputs the
parameters of the spatial transformation that should be applied to
the feature map. Then, the predicted transformation parameters
are used to create a sampling grid, which is a set of points where
the input map should be sampled to produce the transformed
output. Last, the feature map and the sampling grid are taken as

inputs to the sampler, producing the output map sampled from
the input at the grid points [34]. To take advantage of the spatial
transformer network, we integrated the module in the proposed
model structure to increase spatial invariance for fine and coarse
feature maps, respectively.

In our proposed model structure, we have also incorporated a
channel attention network to capture the temporal information
and make full use of the temporal and spectral information
in multitemporal remote sensing images [38]. The channel
attention module involves a global average pooling layer and
followed by two regular densely connected neural network layer.
As different features may not contribute to the model output
equally, the channel attention mechanism allows the model to
highlight informative features that are more relevant to the recon-
struction of the fusion imagery. Through dynamically adjusting
the weights for different features, the attention block facilitates
the model to adapt to different landscapes (e.g., the crop areas
which are significant components of the landscape) to enhance
the important features in the channel dimension.

The last component of the generator is the U-net module,
which takes in the 12-band 256 pixels × 256 pixels feature
map, generated from the convolutional block, spatial trans-
former module, and channel attention block to produce the
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new data sample. The U-net architecture, initially designed by
Ronneberger et al. [39], is a fully convolutional network used for
biomedical image segmentation. The U-Net architecture serves
as the final component, enabling complete information retrieval
from the input feature map for image generation and subsequent
presentation to the discriminator. Its architecture is shown in
the bottom part of Fig. 2. The downsampling process, which
represents the contracting path of the U-net model, involves a
convolutional network consisting of convolutional layers, fol-
lowed by batch normalization, ReLU, and a max pooling oper-
ation. The upsampling process, which represents the expansive
pathway, combines the feature and spatial information through
a sequence of upconvolutions and concatenations with high-
resolution features from the contracting path. Each upsampling
process involves transposed convolution layers, followed by
batch normalization and ReLU. The output, as shown in Fig. 2,
represents a 12-band image of size 256 pixels × 256 pixels.

Deep-learning models rely on the loss function to obtain the
errors between the model prediction and reference data. In the
context of spatiotemporal fusion, a simple loss function may
not be sufficient for the optimization of all the parameters in
deep-learning-based fusion models. For instance, it has been
reported that the mean squared error (MSE) loss function tends to
generate a comparatively smooth fusion image and often results
in the loss of edge information [40], [41]. This is because MSE
is highly sensitive to outliers and penalizes large errors. To that
end, compound loss functions have been proposed to instruct the
fusion models to improve the spatial sharpness in the predicted
fusion images. The compound loss functions may integrate error
metrics such as MSE, adversarial loss of GAN model, and a
perceptual loss which measures loss through comparing the
feature maps output from pretrained neural networks [18], [40].
The loss function of the proposed model consists of three main
components, namely image loss, perceptual loss, and GAN loss.
The total loss function is defined as follows:

L (G) = αLGAN + βLimage + γLperceptual (2)

where α, β, and γ are corresponding weight coefficients. The
GAN loss follows the form of conventional loss function for
GAN model, which helps ensure that statistical distribution of
the output image is comparable to that of the reference image.
The image loss is designed to measure the difference between the
ground truth and the model prediction. Specifically, the image
loss consists of three aspects, namely MSE, average difference
(AD), and spectrum loss. The MSE and AD are utilized to quan-
tify the difference in reflectance between ground truth images
and predicted images. The spectrum loss is constructed based
on spectral angle mapper, which measures the cosine similarity
between the model prediction and ground truth

Limage = Lmse + LAD + Lspectrum (3)

Lmse =
1

N

N∑
n=1

(F −R)2 (4)

LAD =
1

N

N∑
n=1

(F −R) (5)

Lspectrum = I − F ·R
‖ F ‖‖ R ‖ (6)

where F is the model prediction, R stands for the ground truth
reference image, and N represents the number of pixels in the
image.

The perceptual loss is constructed with a pretrained visual ge-
ometry group (VGG) model. The VGG network can effectively
extract high-level features from the images. Though minimizing
the differences between the abstract high feature level, the fusion
model can better reconstruct spatial details. The perceptual loss
is defined as follows:

Lperceptual =
1

N

N∑
n=1

[fvgg (F )− Fvgg (R)]2. (7)

3) Discriminator: The discriminator structure employed in
this model, commonly known as PatchGAN, was previously
proposed in [42] to capture local style statistics. As a popular
decimator for GAN model, PatchGAN has been used in GAN-
based image-to-image translation models, such as pix2pix [30],
and image restoration model [43].

The structure of the discriminator is illustrated in Fig. 3.
Initially, the first six bands of the generated image output from
the generator are concatenated with the target image, and the re-
sultant image is passed through three consecutive downsampling
modules. The downsampling module in the discriminator, sim-
ilar to that in the generator, consists of a convolutional network
comprising convolutional layers, batch normalization, ReLU ac-
tivation, and max pooling operation. Following downsampling,
the module is then fed into two combinations of zero-padding
modules and CNNs, which generates a matrix that determines
whether the generator output can deceive the discriminator.

The discriminator loss is shown as follows:

rloss = sigmoid_cross_entropy (targetimg, I) (8)

gloss = sigmoid_cross_entropy (generatedimg, I) (9)

rmseloss =

√√√√ 1

N

N∑
n = 1

(rloss − gloss)
2 (10)

rloss = rloss + gloss + λrmseloss (11)

where I is an array of ones, rloss and gloss are the sigmoid cross-
entropy losses of the target image and the generated images,
respectively. LAMBDA (λ), defined as 100, is a hyperparameter
that balances the contribution of the generator and the discrimi-
nator in the overall loss function. The discriminator outputs are
used to distinguish the fake image that comes from the generator.

C. Evaluation Matrices

To evaluate the spatial and spectral accuracy of our model
in comparison with benchmark models, we have selected five
evaluation metrics for model evaluation and comparison in this
article, namely root mean square error (RMSE), local binary
patterns (LBP), spectral angle mapping (SAM) [44], relative di-
mensionless global error synthesis (ERGAS) [45], and structural
similarity index measure (SSIM) [46], where RMSE, SAM, and
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Fig. 3. Discriminator structure.

ERGAS are often used to evaluate the spectral accuracy, while
LBP and SSIM are used for spatial accuracy [47]. Among the five
evaluation metrics, a larger value indicates better performance
for SSIM, while smaller values indicate better performance for
RMSE, SAM, ERGAS, and LBP. The formulas for these five
metrics are listed as follows:

RMSE =

√∑N
i = 1 (Fi −Ri)

2

N
(12)

where Fi is the value of pixel i in the generated image, Ri is
the value of pixel i in the target reference image, and N is the
total number of pixels. And RMSE is one of the most commonly
used metrics for evaluating the spectral accuracy for the fused
images.

SAM is employed to quantify the spectral distortion between
the predicted image and the reference image across multiple
bands. The spectral characteristics of each pixel are represented
as an N-dimensional spectrum vector. The degree of spectral
distortion is determined by measuring the angle between the
N-dimensional vectors of the predicted and reference spectra
for each pixel. Lower SAM values indicate that the spectral
information of the predicted image is more closely resembles
that of the reference image

SAM =
1

N

N∑
n = 1

arccos
Fi ·Ri

‖ Fi ‖‖ Ri ‖ . (13)

ERGAS evaluates the spectral disparity between the predicted
and reference images by utilizing normalized RMSE across
bands. It is capable of accommodating variations in reflectance
values across different bands and accounting for resolution
differences between fine and coarse images

ERGAS = 100
h

l

√√√√ 1

B

B∑
b = 1

∑N
i = 1 (Fb,i −Rb,i)

2

Nμ2
b

(14)

where h represents the spatial resolution of fine images and l
represents that of the coarse images. B stands for the total number
of the bands in the multispectral images and μb stands for the
mean value of band b in the model predicted image.

SSIM evaluates the similarity of the overall spatial structures
between the predicted and ground truth images, where a higher
SSIM value indicates better spatial quality in the fusion results.

The equation for SSIM calculation is listed as follows:

SSIM (x, y) =

(
2μxμy + (K1L)

2
)(

2σxy + (K2L)
2
)

(
μ2
x + μ2

y + (K1L)
2
)(

σ2
x + σ2

y + (K2L)
2
)

(15)
where μ represents the sample mean and σ denotes the sample
variance. L signifies the dynamic range of the pixel-values, while
the default values for k1 and k2 are 0.01 and 0.03, respectively.

LBP is a spatial metric that measures the patterns through
characterizing local relationships between a central pixel and its
neighboring pixels

LBP = decimal (d1d2 · · · d8) (16)

di =

{
1, if Di > Dc

0, otherwise
(17)

where Di is the value of pixels surrounding the central pixel in
a 3 × 3 moving window, Dc is the value of the central pixel,
and the decimal function is used to convert the binary digits to
a decimal number. LBP is a visual descriptor for classification
in computer vision by analyzing the local pixels around a point.
It has been used as an effective feature for texture classification
and is selected as a metric for evaluating the spatial accuracy of
the fused images.

D. Computational Support

The training process of the proposed STGAN utilizes high-
performance computing (HPC) resources, specifically the Blue
Waters supercomputer from the National Center for Super-
computing Applications at the University of Illinois Urbana-
Champaign [48]. This efficient use of HPC resources allows us
to manage the model’s complexity effectively for the most inten-
sive part of our approach, i.e., the training phase, ensuring robust
and timely training outcomes. Leveraging these HPC resources,
including NVIDIA K20X GPU accelerators with memory of
6 GB, training of the STGAN model with 1000 steps takes
approximately 325 s, and our full training process encompasses
20 000 steps, totaling around 108 min. The training time per
1000 steps for GANSTFM, HPLTS-GAN, and enhanced deep
convolutional spatiotemporal fusion network (EDCSTFN) is
220, 390, and 140 s, respectively.

Once trained, STGAN’s prediction process is designed to be
highly efficient, requiring minimal computing resources that
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can be easily handled on standard personal computers and
laptops. This characteristic enhances the model’s practicality for
real-world applications, combining the advantages of a sophis-
ticated, pretrained model with low computational demands for
prediction. Moreover, due to the model’s innovative randomized
training strategy and enhanced temporal transferability, it can
be used to predict data across different dates within the same
location, without the need to retrain for each specific prediction
date. This enhanced temporal transferability not only reduces
computational costs but also broadens the model’s applicability
in dynamic and rapidly changing environments.

IV. RESULT

In this section, we employ the multistream STGAN model
proposed in this article to conduct quantitative evaluations and
visual inspection on two datasets, namely the CIA dataset and
LGC dataset. Subsequently, the performance of our method is
assessed by comparing it with three state-of-the-art models,
namely 1) flexible spatiotemporal data fusion (FSDAF), which is
robust weight-function-based spatiotemporal fusion model [8];
2) GAN-based spatiotemporal fusion model [16]; 3) HPLTS-
GAN [21]; and 4) EDCSTFN, which is built and involves a
CNN machine-learning model structure on the aforementioned
datasets [15]. Furthermore, we explore the generalizability and
scalability of the proposed algorithm by contrasting the use of
random reference data with the nearest reference data.

A. Evaluation of CIA Area

1) Quantitative Evaluation: The performance of our pro-
posed model is initially assessed on the CIA dataset. To estab-
lish a comprehensive evaluation, we compare our model with
three prominent state-of-the-art remote sensing image fusion
methods, namely FSDAF, GANSTFM, HPLTS-GAN, and ED-
CSTFN. To ensure fairness and consistency, we reproduce and
fine-tune the best results achieved by these competitive methods,
utilizing the publicly available source code provided by the
authors.

For the CIA dataset, a set of five validation dates was selected
as the last five tiles in the dataset: 04/02/2002, 04/11/2002,
04/18/2002, 04/27/2002, and 05/04/2002. Before partitioning
the remaining dataset into training and testing data, the valida-
tion tile is separated. The results of the validation model are
presented in Table I. The best results are highlighted in bold in
Table I for each validation date.

Concerning spectral accuracy, our proposed STGAN model
outperforms the benchmark models in RMSE and ERGAS.
Specifically, our model consistently achieves an RMSE of ap-
proximately 0.03, surpassing the benchmark models by a signif-
icant margin across all five selected validation dates in the CIA
dataset. Similarly, for ERGAS, our proposed model performs
the best among all benchmark models for all validation dates
and surpasses the other models by a large margin, except for
4 May where our proposed model performs second to FSDAF.
Among the benchmarks, HPLTS-GAN and EDCSTFN demon-
strate relatively better performance compared to the other two
models. Additionally, with the exception of the validation date of

TABLE I
EVALUATION RESULT FOR CIA AREA WITH PROPOSED AND BENCHMARK

SPATIOTEMPORAL FUSION MODEL IN 2002

11 April, where the SAM of the EDCSTFN model is lower than
our proposed model, our model outperforms the benchmarks in
all four other validation dates for SAM.

In terms of spatial accuracy, our model generates compet-
itive results compared with the benchmark models. For LBP,
our model achieves the best performance on April 2 and 18.
GANSTFM model performs the best on the last two validation
dates, April 27 and May 4. HPLTS-GAN performs the best
on Apr. 11 (0.1220), followed by STGAN (0.1227). Regarding
SSIM, our proposed model attains values around 0.95 for all
validation dates, except for April 11, where the SSIM of the ED-
CSTFN model (0.9357) marginally outperforms our proposed
STGAN model (0.0958). For the remaining validation dates, our
proposed model generates superior SSIM values.

Analyzing each one of the five validation dates, we observe
that our proposed model consistently outperforms the bench-
mark models across all five evaluation metrics on 2 April and
18 April for CIA area. However, on the validation date of 11
April, the proposed model falls slightly behind the EDCSTFN
model in terms of SSIM and ERGAS, although the differences
between the two models are relatively marginal. On 18 April and
27 April, the only metric where our proposed model fails
to match the performance of the benchmark models is LBP.
Nonetheless, the disparity in LBP values between the best-
performing GANSTFM model (0.1296) and our proposed model
(0.1351) is minimal on 27 April. Similarly, the LBP values for
our proposed model (0.1334 and 0.1345) closely align with
those of the GANSTFM model on 4 May. Excluding LBP,
our proposed model consistently outperforms the benchmark
models across all other indicators on two validation dates.
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Fig. 4. Mean and standard deviation of the quantitative accuracy evaluations
for the fusion images on 11 Apr. 2002 generated from different reference dates in
the CIA site. Dots represent the mean value and the error bars represent standard
deviations.

An additional advantage observed in our proposed model is its
consistent performance across different dates. The model consis-
tently generates good results in both spatial and spectral evalua-
tions, as indicated the following mean values and standard devi-
ations: RMSE (0.03255±0.00285), SSIM (0.94395±0.01615),
SAM (1.20895±0.19715), ERGAS (0.0892±0.0076), and LBP
(0.12735±0.0075). This consistency highlights the enhanced
robustness of our model compared to the benchmark models,
particularly when dealing with datasets with varying time inter-
vals between images.

To further evaluate the robustness of our proposed STGAN
model, we generated fusion results (prediction date on 11 Apr.
2002 as an example) with different reference dates. Fig. 4
presents the mean and standard deviation of the five accuracy
metrics for STGAN and all the benchmark models for the CIA
site. Through a comparative analysis involving the benchmark
models FSDAF, GANSTFM, HPLTS-GAN, and EDCSTFN, our
findings demonstrate a substantial and significant superiority of
our proposed model in terms of the model robustness. In all five
evaluation metrics, namely RMSE, ERGAS, SAM, SSIM, and
LBP, our proposed model consistently outperforms the other
benchmark models with more preferable mean values of the
metrics. The performance of the remaining four benchmark
models remains relatively comparable, except that HPLTS-GAN
shows superior performance in LBP compared to the other three
benchmark models. The standard deviations (error bars in Fig. 4)
also tend to be lower for the proposed STGAN compared to the
three benchmark models, suggesting that STGAN is less affected
by the images acquired on dates that are far from the prediction
dates.

Overall, the observed consistency, robustness, and scalabil-
ity of our proposed model are valuable attributes, especially
when dealing with large datasets spanning multiple decades and
varying time intervals between images. Consequently, based
on the analysis of the selected validation dates, we argue that
our proposed model consistently outperforms the benchmark
models in terms of both spatial and spectral accuracy across all
the evaluated validation dates in the CIA dataset.

2) Visual Inspection: Fig. 5 displays the synthesized fu-
sion results obtained using the benchmark models FSDAF,
GANSTFM, HPLTS-GAN, EDCSTFN, as well as our proposed

STGAN model, for the CIA area. The visual demonstration
focuses on false color composite composed of the NIR, red, and
green bands. The first row provides an overview of the entire
CIA area, while the second row presents zoomed-in details of
a highlighted region in the dashed yellow box. The third row
depicts the error map obtained by comparing the fusion results
with the reference. Upon visual inspection, we observe that the
error distributions for the FSDAF and EDCSTFN models are no-
ticeably larger compared to both the GANSTFM, HPLTS-GAN,
and our proposed STGAN model. And the error distribution of
our proposed STGAN model appears to be the best and most
consistent among the four models. Notably, our STGAN model
exhibits particularly favorable performance in “red” regions,
which are agricultural fields during the crop vegetative stages.

Through both quantitative evaluation and visual examination,
it is evident that our proposed STGAN model can effectively
compete with and even outperform existing benchmark spa-
tiotemporal fusion models.

3) Ablation Study: To validate the architectural design of
the proposed STGAN model, we conducted a comprehensive
ablation study to quantitatively assess the contribution of each
key component—spatial transformer, channel attention, and U-
net module. The experiments utilized CIA data from 2nd April
2002, with each architectural variant trained for 2000 steps under
identical experimental conditions and RMSE as the evaluation
metric.

The baseline STGAN model achieved an RMSE of 0.0355,
establishing the benchmark for comparison. Removal of the
spatial transformer module, designed to augment the spatial
features of both coarse and fine feature maps, increased the
RMSE to 0.0371. Similarly, eliminating the channel attention
module, which captures the temporal features, resulted in a
larger RMSE of 0.0386. To investigate the impact of U-net
layers, we conducted experiments removing two and four lay-
ers from the U-Net structure, both yielding larger RMSEs
of 0.0386 and 0.0361, compared with the baseline STGAN
model.

The ablation study demonstrates that each component of the
proposed STGAN model, including the spatial transformer mod-
ule, channel attention module, and the number of U-Net layers,
makes a distinct and significant contribution to the model’s per-
formance, with the complete STGAN architecture outperform-
ing its ablated variants in spatiotemporal fusion. Component
removal generally leads to decreased performance of the model.
These findings provide support for our architectural choices
and validate the necessity of each component in the proposed
STGAN design.

B. Evaluation of LGC Area

1) Quantitative Evaluation: Similar analysis was performed
on another location, namely the LGC area, to evaluate the per-
formance of our proposed STGAN model. The same strategy for
CIA dataset is applied to the LGC dataset and select the last four
times in the dataset: 01/29/2005, 02/14/2005, 03/02/2005, and
04/03/2005 as the validation date. The results of the validation
model for the LGC dataset are presented in Table II. As with
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Fig. 5. Fusion results for the CIA area on 11 Apr. with different spatiotemporal fusion methods.

TABLE II
EVALUATION RESULT FOR LGC AREA WITH PROPOSED AND BENCHMARK

SPATIOTEMPORAL FUSION MODEL IN 2005

Table I, the best results obtained on each validation date are
highlighted in bold.

Comparing the results obtained for the CIA area, the findings
for the LGC area further demonstrate the superiority of our
proposed fusion model in both spectral and spatial accuracy
(Table II). In terms of spectral accuracy, our proposed model
significantly outperforms the other benchmark models both in
RMSE and ERGAS. Analyzing the RMSE, our proposed model
emerges as the best performing model on the validation dates
of 29 January, 14 February, and 3 April. And our model outper-
forms all other benchmark models for ERGAS. Furthermore,
our proposed model exhibits exceptional spatial accuracy in
the LGC area. Across all four selected validation dates, our
model consistently provides competitive results in terms of the
spatial-related evaluation metrics: SSIM and LBP. Specifically,
our model achieves the highest performance on 14 February and

Fig. 6. Mean and standard deviation of the quantitative accuracy evaluations
for the fusion images on 14 Feb. 2005 generated from different reference dates
in the LGC site. Dots represent the mean value and the error bars represent
standard deviations.

3 April based on the SSIM evaluation metric. Our model remains
the top-performing model overall across all validation dates
when evaluated by LBP, while EDCSTFN and HPLTS-GAN
also demonstrate satisfactory performance. Similar to the results
obtained for the CIA dataset, all the evaluated indicators on the
LGC dataset demonstrate a high level of consistency across each
validation date.

In summary, the quantitative evaluation results of the LGC
area demonstrate the superior spectral performance of our
proposed spatiotemporal fusion model compared to existing
benchmark models. Additionally, our model exhibits remarkable
spatial accuracy specifically in the LGC area.

Fig. 6 presents the mean and standard deviation of the five
accuracy metrics for STGAN and all the benchmark models for
the LGC dataset. Similar to the result from CIA dataset, the
findings demonstrate consistent superiority of our models over
the benchmark models across all indicators in the LGC site.
Although the proposed model exhibits comparable performance
to GANSTFM in terms of ERGAS, it significantly outperforms
the other benchmark models in terms of the mean values of
RMSE, SAM, SSIM, and LBP. While FSDAF presents satis-
factory evaluation results for SAM (Table II), its performance
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Fig. 7. Fusion results for the LGC area on 14 Feb. with different spatiotemporal fusion methods.

is significantly affected by the distance between the prediction
date and the reference that is used to generate the fused images.
Notably, the results from our proposed model exhibit enhanced
consistency, as indicated by a smaller variance (i.e., error bars
in Fig. 6) compared to the benchmark models.

2) Visual Inspection: Similar to the CIA area, a visual ex-
amination of the fusion results in the LGC area is presented in
Fig. 7, contrasting the predicted images generated by the FS-
DAF, GANSTFM, HPLTS-GAN, EDCSTFN, and our proposed
STGAN models. Upon comparing it with the benchmark model,
we observe that our proposed model achieves improved accuracy
in terms of error distribution, particularly in edge areas where
landscape transitions occur. It is also noticeable that the STGAN
model presents lower errors in the flooded areas [the dark strip in
Fig. 7(b)], suggesting that STGAN is advantageous in capturing
drastic changes that caused substantial landscape and spectral
changes among images.

While the weight-function-based FSDAF model may also pre-
dict flooded areas well, it may not fully accommodate the edges
and fine-scale features in the images. The comparison demon-
strates a better ability of STGAN to capture spatial changes in the
landscape and effectively minimize spatial inconsistencies. Vi-
sually, the general error metrics of our proposed STGAN model
exhibit noticeable improvement over the benchmark model.

In conclusion, we conducted experiments on the LGC dataset
to evaluate the performance of our proposed model in a different
location and compared it with existing benchmark models. The
findings from the LGC area align with those from the CIA area,
reinforcing the high competitiveness of our model in image
fusion compared to the benchmark models. This suggests that
our proposed model has the potential for broad applicability
across diverse landscapes.

C. Comparison Between Nearest and Random
Reference Strategy

The selection of reference images plays a crucial role in
determining the prediction accuracy of existing spatiotempo-
ral fusion models. Typically, these models rely on acquiring

reference image pairs with acquisition dates that are close to
the prediction date. However, in this article, we introduce a
key feature: the randomization of reference tile selection. This
randomized reference selection becomes essential, particularly
for large-scale analysis and image sets without timestamps.

This section aims to evaluate whether our proposed STGAN
model can effectively handle randomization reference instead
of the traditional nearest reference selection strategy. To achieve
this, we compare the performance of our STGAN model using
randomized and nearest reference strategies. Specifically, we
seek to answer two key questions: 1) How much sacrifice in
performance is incurred when transitioning from the nearest
reference strategy to the random strategy with proposed STGAN
model? 2) Which aspect, spatial or spectral accuracy, is more
affected by the randomization strategy, and which evaluation
matrices are most impacted? By addressing these questions, we
can gain insights into the impact of randomization reference on
the performance of our STGAN model and determine whether
spatial or spectral accuracy is more influenced, along with
identifying the most affected evaluation indicators.

We compare the nearest strategy and random strategy using
the following equation:

ΔI = I (date, nearest)− I (date, random) (18)

%I = ΔI/I (date, nearest) (19)

where I is the evaluation matrices, including RMSE, SSIM,
SAM, ERGAS, and LBP. ΔI denotes the absolute differences
in evaluation metrics between the closest strategy and a random
strategy, while %I represent the percentage change ofΔI relative
to the value obtained for the nearest strategy.

Tables III and IV present the results of performance varia-
tion observed when comparing the random reference strategy
with the nearest reference strategy for the proposed STGAN
model in the CIA and LGC areas, respectively. Among the five
evaluation metrics, SSIM and LBP are minimally affected by
the transition from the nearest strategy to the random strategy,
with percentage changes of less than 0.05 for both the CIA and
LGC areas. Notably, the transition from the nearest strategy to
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TABLE III
PERFORMANCE CHANGE USING RANDOM REFERENCE STRATEGY

COMPARED WITH THE NEAREST REFERENCE STRATEGY FOR

PROPOSED STGAN MODEL IN CIA AREA IN 2002

TABLE IV
PERFORMANCE CHANGE USING RANDOM REFERENCE STRATEGY

COMPARED WITH THE NEAREST REFERENCE STRATEGY FOR

PROPOSED STGAN MODEL IN LGC AREA IN 2005

a random strategy surprisingly yields a slight positive effect
on the evaluation outcomes pertaining to LBP and SSIM in
the CIA dataset. Conversely, the remaining three evaluation
metrics, namely RMSE, SAM, and ERGAS, are relatively more
influenced by the adoption of the random reference strategy.

The influence of transitioning from the nearest reference
strategy to a random one on RMSE, ERGAS, and SAM ex-
hibits location-dependent characteristics. In the case of the LGC
dataset, the impact on RMSE and SAM is relatively insignificant,
with percentage changes of −0.0388 and −0.0543, respectively.
However, for the CIA dataset, the impact is relatively substantial,
with absolute percentage changes exceeding 0.1. In terms of ER-
GAS, the impact on the CIA dataset is relatively small (−0.013)
compared to that observed for the LGC dataset (−0.085). Hence,
it can be inferred that the effects on RMSE, ERGAS, and SAM
are contingent upon the specific study location. Additionally,
the supplementary materials also indicate that the adoption of
the nearest strategy in our proposed model does not generate a
substantial negative impact especially when compared to other
benchmark models. Overall, we maintain that the transition from
the nearest to the random reference strategy does not exert a
significant influence on the STGAN model’s evaluation metrics,
suggesting that the associated errors can be managed effectively.

V. DISCUSSION

This article introduces a multistream STGAN that is specifi-
cally designed to enhance the temporal transferability in an effort
to accommodate the drastic changes among available satellite
images. The innovative integration of multistream inputs, spatial
transformer modules, channel attention networks, and U-net

architecture collectively enhances the model’s ability to learn
spatial and temporal patterns, while relaxing the amount of
image pairs required for accurate spatiotemporal image fusion
in previous fusion models. Compared to the four benchmark
models, our proposed STGAN model demonstrates superior
performance when evaluated by a comprehensive collection of
spectral and spatial accuracy metrics. Parameter analysis further
confirms that all the model components contribute significantly
to the superior model performance.

STGAN not only achieves lower errors but also performs
more stably (i.e., lower standard deviations) when using different
image pairs to predict the same date, as shown in Figs. 4 and 6.
Such stable performance suggests that STGAN is equipped with
enhanced ability to accommodate varying levels of temporal
changes. This advantage of enhanced temporal transferability is
further reflected in the comparison between nearest and random
reference strategy (Tables III and IV). Through the randomized
reference strategy, we aim to introduce varying levels of tempo-
ral changes between images in the model training process. The
comparable performance of STGAN under both randomized and
nearest reference strategies highlights its robust capability to
accommodate substantial temporal variations.

The enhanced robustness and temporal transferability can be
attributed to the randomized design of our model during training
with the reference dataset. The randomized design of our model
offers several advantages. First, it enables the model to learn and
accommodate various levels of temporal changes, resulting in
consistently high-quality fused images across different predic-
tion dates. Second, it demonstrates robustness by enabling the
model to handle different edge cases and generate reasonable
results for such scenarios. Last, the scalability of our model is
noteworthy, as the machine-learning algorithm only needs to be
run once per location to generate a pretrained model applicable
for different times. Subsequently, batch image generation in the
same location for different prediction dates can be performed
without requiring further training.

STGAN has great potential to enhance environmental mon-
itoring applications with its substantial improvements in tem-
poral transferability. For instance, temporally dense imagery
generated by STGAN can make significant contributions to
monitoring land cover changes, vegetation health, agriculture
productivity, and water bodies over time. For instance, literature
has found that accurate fusion images are conducive to better
characterization of vegetation phenology and early-season map-
ping of crop species [2], [49], [50]. Furthermore, disaster man-
agement could leverage STGAN for assessing areas impacted by
disturbance events, such as floods, wildfires, or hurricanes, by
providing accurate fusion images with high spatial and temporal
resolutions before and after such events to support rapid response
to natural disasters [51], [52].

With the rapid growth of satellite missions and the increas-
ing availability of remote sensing datasets, there is a grow-
ing demand for innovative models to integrate and synthe-
size multisource satellite data. The proposed STGAN model,
with its novel architecture, exemplifies this trend by effectively
capturing complex spatiotemporal patterns from multisource
satellite images, with a great potential to incorporate more



1574 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 18, 2025

recent satellite missions, such as Sentinel-2 and PlanetScope.
While STGAN exhibits promising performance with enhanced
temporal transferability, the training process is designed to
accommodate specific satellite image scenes. Thus, applying
STGAN across extended geographic regions may present un-
certainties given the diverse spatial complexity and various
temporal change patterns in different regions. Recent advances
in deep learning present compelling opportunities to further
enhance the scalability of spatiotemporal fusion models [41],
[53]. New deep-learning model structures, such as transformers,
have emerged as powerful tools with enhanced feature extraction
and sequence modeling capabilities, particularly in capturing
complex spatiotemporal patterns from multisource satellite im-
ages [49], [54]. Recent discoveries in self-supervised learning
strategies, such as masked autoencoders and contrastive learning
approaches, offer significant potential for enabling models to
learn robust representations from multi-source imagery across
not only prolonged temporal periods but also extended geo-
graphic regions [55], [56]. Built upon these ideas, geospatial
foundation models leverage large-scale training on diverse and
complex spatiotemporal patterns, enabling them to learn gener-
alized and transferable features that span wide geographic areas
and extended temporal scales [57], [58], [59]. Future efforts
may be devoted to leveraging geospatial foundation models to
build scalable frameworks that further enhance the scalability of
spatiotemporal fusion models across space and time.

VI. CONCLUSION

In summary, this article presents a novel and resilient deep-
learning model, named STGAN, which utilizes a GAN-based
approach for spatiotemporal satellite image fusion, emphasiz-
ing improved transferability. The proposed GAN-based fusion
model incorporates a multistream input architecture, enabling
it to learn temporal variations in surface reflectance from
high-temporal-resolution MODIS images, while leveraging the
spatial features obtained from high-spatial-resolution Landsat
image correspondents. The model incorporates a GAN-based
structure that integrates a spatial transformer, a channel attention
module, and a U-net structure. Additionally, STGAN adopts a
unique random reference strategy, allowing for the handling of
multidecade data with varying temporal gaps and data lacking
timestamps.

Experiments including quantitively evaluations and visual
inspections conducted on the CIA and LGC datasets demon-
strate that the proposed STGAN model exhibits high robustness
and competitiveness, producing fused images that are spatially
and spectrally accurate. Comparative analysis against existing
benchmark models, including FSDAF, GANSTFM, HPLTS-
GAN, and EDCSTFN, reveals that STGAN outperforms these
benchmarks across multiple dimensions, as assessed by evalua-
tion metrics including RMSE, SSIM, SAM, ERGAS, and LBP,
as well as visual inspection.
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